

Intel® RealSense™ Tracking

Camera T265 and Intel®

RealSense™ Depth Camera D435 -

Tracking and Depth

Revision 001

November 2019

By Phillip Schmidt

 Senior Machine Learning Engineer, Intel Corporation

Contributors

James Scaife Jr., Michael Harville, Slavik Liman, Adam Ahmed

2

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL

OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND

CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED

WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A

PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death.

SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD

INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS

AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY,

ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION,

WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT

OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or

characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no

responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without

notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from

published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-

800-548-4725, or go to: http://www.intel.com/design/literature.htm.

Code names featured are used internally within Intel to identify products that are in development and not yet publicly announced for release.

Customers, licensees and other third parties are not authorized by Intel to use code names in advertising, promotion or marketing of any product

or services and any such use of Intel's internal code names is at the sole risk of the user.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2019, Intel Corporation. All rights reserved.

http://www.intel.com/design/literature.htm

3

Contents

1 Introduction ... 7

1.1 Purpose and Scope of This Document .. 7

1.2 Organization .. 7

2 Overview .. 8

2.1 Intel® RealSense™ D435 Overview .. 8

2.2 Intel® RealSense™ T265 Overview ... 8

2.3 Spatial Alignment between T265 and D435 .. 8

3 Setup ... 10

3.1 Hardware ... 10

3.1.1 Devices .. 10

3.1.2 USB ... 10

3.1.3 Host Computer .. 11

3.1.4 Mount .. 11

3.2 Software .. 12

3.2.1 Configuration File .. 12

4 Running the Tracking and Depth Sample Application .. 14

4.1 Data Flow Overview .. 14

4.2 Connect Device to Computer .. 14

4.3 Running the rs-tracking-and-depth executable ... 14

4.3.1 Starting the process ... 14

4.3.2 Moving the viewpoint ... 15

4.3.3 Moving the cameras ... 15

4.3.4 Shutdown ... 15

5 Code Overview .. 16

4

Tables

Table 3-1. Intel® RealSense™ SDK 2.0 Resources ... 13

5

List of Figures

Figure 1. Hardware Setup and Coordinate Frames.. 9

Figure 3-1. D435 and T265 Device ... 10

Figure 3-2. System Diagram ... 11

Figure 3-3. T265 and D435 Bracket ... 11

Figure 4-1. Tracking and Depth Sample Data Flow Diagram 14

6

Revision History

Revision Number Description Revision Date

001 Initial Release November 2019

Introduction

7

1 Introduction

1.1 Purpose and Scope of This Document
In order for a machine to understand the world in 3D, it requires spatial understanding

not only about the environment but also about its own position and orientation in space.

This is possible with the Intel® RealSense™ Tracking Camera T265 in conjunction with the
Intel® RealSense™ Depth Camera D435, rigidly coupled together and spatially aligned.

The Intel® RealSense™ Tracking Camera T265 estimates its position and orientation
relative to a gravity-aligned static reference frame, while the Intel® RealSense™ Depth
Camera D435 performs stereo matching to obtain a dense cloud of 3D scene points.

Together this input can be used to obtain a point cloud that is registered with respect to

a gravity-aligned static reference frame. This can be a very valuable data stream for

applications such as scene mapping and object scanning.

This document describes a sample application that serves as a guide for using and

aligning the data streams from the two cameras.

It is not in the scope of the document to discuss the extrinsic calibration and time

synchronization between the cameras.

1.2 Organization
This document is organized into three main parts:

• Overview – Brief overview of the cameras and their combined use.

• Setup – Required Hardware and software setup for running the tracking and

depth sample application.

• Running the sample application – Describes how to start the tracking and depth

sample application, how to operate and interact with the cameras, and what the

expected output is.

Overview

8

2 Overview

2.1 Intel® RealSense™ D435 Overview
The cameras of the D400 series run (dense) stereo matching on an ASIC to compute the

disparity and depth per pixel, which in turn allows estimation of 3D scene points. Please

refer to the D400 Series product family datasheet and stereo depth product page for

more details.

In the case of a moving depth camera, many applications require the point clouds from

different times to be spatially registered, in order to enable efficient accumulation of

information. Such registration can be computationally expensive, necessitating

additional compute resources or sometimes preventing an application from running in

real-time. The T265 tracking camera can be a low-power, low-cost solution to this

registration problem.

2.2 Intel® RealSense™ T265 Overview
Simultaneous Localization and Mapping Systems estimate the position and orientation

of a device in space while jointly building an internal map representation of the

environment. The Intel® RealSense™ Tracking Camera T265 uses two wide-field-of-view

fisheye cameras together with an Inertial Measurement Unit to accomplish this task and

outputs its pose relative to a constant initial frame, i.e. translation in meters (m) and

orientation as a quaternion with respect to the gravity-aligned initial frame. Please refer

to the tracking camera datasheet and tracking product page for further details.

2.3 Spatial Alignment between T265 and D435
For the correct transformation of points from the depth frame into a world reference

frame, the relative transformation between the depth sensor and the body frame, i.e.

the pose frame, has to be known as well as the relative pose/motion of the body with

respect to (w.r.t.) a static reference frame. For the definition of the respective frames

please refer to Figure 1. The relative transformation of the depth frame w.r.t. the pose

frame is denoted as 𝐻_𝑝𝑜𝑠𝑒_𝑑𝑒𝑝𝑡ℎ and the relative transformation of the pose frame

w.r.t. the world is denoted as 𝐻_𝑤𝑜𝑟𝑙𝑑_𝑝𝑜𝑠𝑒. For more details on the definition of the

world and pose frame please refer to the tracking camera datasheet. In the following

the transformation 𝐻_𝑝𝑜𝑠𝑒_𝑑𝑒𝑝𝑡ℎ is discussed in more detail as it has to be provided by

the user in the form of a configuration file as outlined below.

https://dev.intelrealsense.com/docs/intel-realsense-d400-series-product-family-datasheet
https://www.intelrealsense.com/stereo-depth/
https://dev.intelrealsense.com/docs/tracking-camera-t265-datasheet
https://www.intelrealsense.com/tracking/
https://dev.intelrealsense.com/docs/tracking-camera-t265-datasheet

Overview

9

 Figure 1. Hardware Setup and Coordinate Frames

The parameters to be provided include:

• Translation:

o 3D-translation vector that determines the offset between the depth

frame and the pose frame, relative to the pose frame. It is specified as a

3x1 vector in meters. Mathematically written as 𝑡𝑥, 𝑡𝑦 , 𝑡𝑧.

• Rotation:

o 3D-rotation between the depth frame and the pose frame, relative to the

pose frame, specified as a 3x3 rotation matrix. Mathematically written as [[𝑟11, 𝑟12, 𝑟13], [[𝑟21, 𝑟22, 𝑟23], [𝑟31, 𝑟32, 𝑟33]].

The combined homogenous transformation transforms a point from the depth frame

into the pose frame. Mathematically this transformation is written as follows:

 𝑝𝑎 = [𝑟11 𝑟12 𝑟13𝑟21 𝑟22 𝑟23𝑟31 𝑟32 𝑟33] 𝑝𝑏 + [𝑡𝑥𝑡𝑦𝑡𝑧]𝑎

The scope of this document includes only the spatial alignment between the T265 and

D435 camera streams. The timestamps for the two devices are available through

librealsense on the same host-correlated system time and should be used for temporal

alignment of the data, e.g. using interpolation if necessary. This temporal alignment is

not in the scope of this document.

Setup

10

3 Setup
This section describes the required hardware and software setup for running the

tracking and depth sample application.

3.1 Hardware
The hardware required includes:

• Intel® RealSense™ Depth Camera D435

• USB 3.0 Type-C cable

• Intel® RealSense™ Tracking Camera T265

• USB Micro B cable

• A 3D-printed mount (see Section 3.1.4)

• 2x M3x18mm screws, 2x M3x10mm screws, 1/4-20 insert nut

• Host system running Windows* 10 or Ubuntu* 16.04.

3.1.1 Devices

Intel® RealSense™ Tracking Camera T265 and Intel® RealSense™ Depth Camera D435 as

shown below are used for the tracking and depth sample respectively.

Figure 3-1. D435 and T265 Device

3.1.2 USB

A USB 3.0 Type-C cable to connect the D435 and a USB Micro B cable to connect the

T265 to the host computer.

Setup

11

Figure 3-2. System Diagram

3.1.3 Host Computer

A computer running Windows* 10 or Ubuntu* 16.04. For a full list of supported

operating system please refer to the librealsense README.md.

3.1.4 Mount

A 3D-print of the sample design depicted in Figure 3-3 can be used to rigidly attach

both cameras. The transformation between the two cameras for this mount is provided

and can be used to transform points from the depth camera to the tracking camera

frame.

Two M3x10mm screws can be used to mount the T265 below and two M3x18mm

screws for the D435 above (in the depicted orientation in Figure 1 and Figure 3-3). In

this orientation a 1/4-20 insert nut can be used to mount the assembly on a tripod (or

any other standard camera mount).

Figure 3-3. T265 and D435 Bracket

D435

Host computer

T265

USB3

USB2/3

https://github.com/IntelRealSense/librealsense/blob/development/examples/tracking-and-depth/bracket_t265nd435_external.stl
https://github.com/IntelRealSense/librealsense/blob/development/examples/tracking-and-depth/H_t265_d400.cfg

Setup

12

3.2 Software
Install the latest release of the Intel® RealSense™ SDK 2.0 on the host computer. Table

3-1 contains pointers to the Intel® RealSense™ SDK 2.0 homepage, GitHub* repository

where you can download the latest release, and the Intel® RealSense™ SDK 2.0

documentation, a direct pointer to the tracking and depth sample and its respective

documentation, as well as a pointer to the tracking and depth sample configuration file.

3.2.1 Configuration File

The tracking and depth sample configuration file is a text file that stores the

homogeneous transformation between D435 and T265 in the following format:

R11 R12 R13 tx
R21 R22 R23 ty
R31 R32 R33 tz

where Rij are the components of the row-major rotation matrix R and [tx, ty, tz]T is the

translation vector (in meters). The transformation expresses the D435 depth frame

(which coincides with the left infrared imager) with respect to the T265 body frame (as

defined in the Tracking Camera Datasheet). Please also refer to Figure 1 for a

visualization of the coordinate frames.

The configuration file is expected to be located in the same folder as the tracking and

depth sample executable and is copied to the respective folder during the build

process. The file can be edited (or replaced) for custom configurations that are different

from the mount that is provided with the sample. Please ensure that rotation matrix R is

a valid rotation matrix and orthonormal.

https://dev.intelrealsense.com/docs/tracking-camera-t265-datasheet

Setup

13

Table 3-1. Intel® RealSense™ SDK 2.0 Resources

Resource URL

Intel® RealSense™
SDK 2.0 Home
Page

https://www.intelrealsense.com/developers/

LibRealSense
GitHub*

https://github.com/IntelRealSense/librealsense

Intel® RealSense™
SDK 2.0
Documentation

https://dev.intelrealsense.com/

Tracking and Depth
Sample

https://github.com/IntelRealSense/librealsense/tree/master/exam
ples/tracking-and-depth

Tracking and Depth
Sample
Configuration File

https://github.com/IntelRealSense/librealsense/blob/master/exam
ples/tracking-and-depth/H_t265_d400.cfg

https://www.intelrealsense.com/developers/
https://github.com/IntelRealSense/librealsense
https://dev.intelrealsense.com/
https://github.com/IntelRealSense/librealsense/tree/master/examples/tracking-and-depth
https://github.com/IntelRealSense/librealsense/tree/master/examples/tracking-and-depth
https://github.com/IntelRealSense/librealsense/blob/master/examples/tracking-and-depth/H_t265_d400.cfg
https://github.com/IntelRealSense/librealsense/blob/master/examples/tracking-and-depth/H_t265_d400.cfg

Running the Tracking and Depth Sample Application

14

4 Running the Tracking and

Depth Sample Application

4.1 Data Flow Overview
The general data flow in the tracking and depth sample is depicted below. The point

cloud from the D435 and the T265 pose are streamed to the host via USB. The pose

estimate is used, together with the extrinsic transformation between the two cameras,

to transform the point cloud and finally to display it.

Figure 4-1. Tracking and Depth Sample Data Flow Diagram

4.2 Connect Device to Computer
Connect the devices using the USB cable to the PC where Intel® RealSense™ SDK 2.0
has been installed.

4.3 Running the rs-tracking-and-depth executable

4.3.1 Starting the process

Use a bash terminal on Ubuntu or a command prompt in Windows to navigate to the

folder where the rs-depth-and-tracking executable was built.

From a command prompt run:

./rs-depth-and-tracking

Note: It is recommended that the user verifies the configuration file (Sec. 3.2.1) was

copied to the same folder prior to running the executable.

D435 point cloud
Apply

transformation

Display point

cloud

T265 pose

Running the Tracking and Depth Sample Application

15

4.3.2 Moving the viewpoint

If the extrinsic configuration file is found in the same folder and the executable starts

successfully with both cameras connected, a window will open that displays the point

cloud in a gravity-aligned reference frame together with the estimated trajectory of the

T265. The points are colored using the RGB data from the D435. The initial view

configuration is similar to that of the rs-pointcloud sample, to allow easy comparison of

the point cloud output with and without tracking.

The view can be changed by using the left mouse button to click into the window and

drag left/right or up/down to rotate yaw and pitch respectively. The mouse wheel can

be used to zoom in and out of the scene.

4.3.3 Moving the cameras

When moving the cameras while facing a static scene, the camera pair should appear

much like a “flashlight” illuminating different parts of a constant world. In contrast,
without the pose registration provided by the T265 camera, the output of a single

moving depth camera would appear to be a continuously changing point cloud without

any scene context. Please note that some lag can be noticeable, due to the relative

latency between the latest samples of the two camera streams, and this lag is typically

proportional to the velocity of the camera pair. For applications in which it is important

to reduce this lag, the poses should be interpolated based on the synchronized

timestamps.

To test the extrinsic calibration accuracy, the cameras can be rotated around all three

axes while observing a point in the scene. With good calibration, the offset of the point

should remain within a few pixels (for close objects at approx.. 0.3 to 0.5 meter)

throughout the motions.

4.3.4 Shutdown

The application can be shut down by either closing the window or pressing CTRL-C in

the terminal to kill the process.

https://dev.intelrealsense.com/docs/rs-pointcloud

Code Overview

16

5 Code Overview
The example is based on the pointcloud example. Please also refer to its respective

documentation.

First, include the librealsense header:

#include <librealsense2/rs.hpp> // Include RealSense Cross Platform API

Next, we prepare a very short helper library encapsulating the basic OpenGL rendering

and window management:

#include "example.hpp" // Include short list of convenience

functions for rendering

We also include the STL <algorithm> header for std::min and std::max,

and <fstream> for std::ifstream to parse the homogeneous transformation matrix

from a text file. Next, we define a state struct and two helper

functions. state and register_glfw_callbacks handle the point cloud’s rotation in

the application, and draw_pointcloud_wrt_world makes all the OpenGL calls

necessary to display the pointcloud.

// Struct for managing rotation of pointcloud view

struct state { double yaw, pitch, last_x, last_y; bool ml; float

offset_x, offset_y; texture tex; };

// Helper functions

void register_glfw_callbacks(window& app, state& app_state);

draw_pointcloud_wrt_world(float width, float height, glfw_state&

app_state, rs2::points& points, rs2_pose& pose, float H_t265_d400[16]);

The example.hpp header allow us to easily open a new window and prepare textures

for rendering. The state class (declared above) is used for interacting with the mouse,

with the help of some callbacks registered through glfw.

// Create a simple OpenGL window for rendering:

window app(1280, 720, "RealSense Tracking and Depth Example");

// Construct an object to manage view state

state app_state = { 0, 0, 0, 0, false, 0, 0, 0 };

// register callbacks to allow manipulation of the pointcloud

register_glfw_callbacks(app, app_state);

We are going to use classes within the rs2 namespace:

Code Overview

17

using namespace rs2;

As part of the API, we offer a pointcloud class which calculates a pointcloud and the

corresponding texture mapping from depth to color frames. To make sure we always

have something to display, we also make a rs2::points object to store the results of

the pointcloud calculation.

// Declare pointcloud object, for calculating pointcloud and texture

mappings

pointcloud pc = rs2::context().create_pointcloud();

// We want the points object to be persistent so we can display the

last cloud when a frame drops

rs2::points points;

We declare a rs2_pose object to store the latest pose as reported by T265.

rs2_pose pose;

To stream from multiple device, please also refer to the multicam example. First, a

common context is created and a (separate) pipeline is started for each of the queried

devices.

// Start a streaming pipe per each connected device

for (auto&& dev : ctx.query_devices())

{

 rs2::pipeline pipe(ctx);

 rs2::config cfg;

 cfg.enable_device(dev.get_info(RS2_CAMERA_INFO_SERIAL_NUMBER));

 pipe.start(cfg);

 pipelines.emplace_back(pipe);

}

The extrinsics between the streams, namely depth and pose, are loaded from a

configuration file that has to be provided in the form of a row-major homogeneous 4-

by-4 matrix.

Code Overview

18

While the app is running, we loop over the pipelines and wait for the respective color,

depth and pose frames:

for (auto &&pipe : pipelines) // loop over pipelines

 […]
 auto frames = pipe.wait_for_frames(); // Wait for the next set

of frames from the camera

Using helper functions of the frameset object, we check for new depth and color

frames. Then we pass it to the pointcloud object to use as texture, and also give it to

OpenGL with the help of the texture class. OpenGL will use the new data for

pointcloud rendering.

auto depth = frames.get_depth_frame();

// Generate the pointcloud and texture mappings

points = pc.calculate(depth);

auto color = frames.get_color_frame();

// Tell pointcloud object to map to this color frame

pc.map_to(color);

// Upload the color frame to OpenGL

app_state.tex.upload(color);

In a similar way, we get the pose data from the pose frame of the frameset:

auto pose_frame = frames.get_pose_frame();

if (pose_frame) {

 pose = pose_frame.get_pose_data();

}

Finally, we call draw_pointcloud_wrt_world to draw the pointcloud with respect to a

common (fixed) world frame. This is done by moving the observing camera according to

the transformation reported by T265 and extrinsics to the depth stream (instead of

transforming the scene by the inverse which results in the same relative motion).

draw_pointcloud_wrt_world(app.width(), app.height(), app_state, points,

pose, H_t265_d400);

draw_pointcloud_wrt_world primarily calls OpenGL, but the critical portion iterates

over all the points in the pointcloud, and where we have depth data, we upload the

point's coordinates and texture mapping coordinates to OpenGL.

Code Overview

19

/* this segment actually prints the pointcloud */

auto vertices = points.get_vertices(); // get vertices

auto tex_coords = points.get_texture_coordinates(); // and texture

coordinates

for (int i = 0; i < points.size(); i++)

{

 if (vertices[i].z)

 {

 // upload the point and texture coordinates only for points we

have depth data for

 glVertex3fv(vertices[i]);

 glTexCoord2fv(tex_coords[i]);

 }

}

The second critical portion changes the viewport according to the provided

transformation.

// viewing matrix

glMatrixMode(GL_MODELVIEW);

glPushMatrix();

GLfloat H_world_t265[16];

quat2mat(pose.rotation, H_world_t265);

H_world_t265[12] = pose.translation.x;

H_world_t265[13] = pose.translation.y;

H_world_t265[14] = pose.translation.z;

glMultMatrixf(H_world_t265);

glMultMatrixf(H_t265_d400);

Please note that OpenGL uses column-major matrices.

