
Depth Map Improvements for Stereo-based
Depth Cameras on Drones

Daniel Pohl
Intel Corporation,

Konrad-Zuse-Bogen 4,
Krailling, Germany

daniel.pohl@intel.com

Sergey Dorodnicov
Intel Corporation,

Rachel 4,
Haifa, Israel

sergey.dorodnicov@intel.com

Abstract—Using stereo-based depth cameras outdoors on
drones can lead to challenging situations for stereo algorithms
calculating a depth map. A false depth value indicating an object
close to the drone can confuse obstacle avoidance algorithms and
lead to erratic behavior during the drone flight. We analyze the
encountered issues from real-world tests together with practical
solutions including a post-processing method to modify depth
maps against outliers with wrong depth values.

Index Terms—depth camera, stereo, computer vision

I. INTRODUCTION

In the last decade, depth cameras have become available in
more affordable versions which increased the usage both in
the industrial as well as in the consumer space. One interesting
use case is on drones, where stereo-based depth cameras
generate data for obstacle avoidance algorithms to keep the
drone safe. However, the algorithms used to calculate depth
information are trying to solve an under-determined problem.
From two-dimensional images, data in three dimensions is
reconstructed. Therefore, it seems only natural that in certain
cases the generated depth images might contain wrong data as
shown in Figure 1. Specifically, when used in larger outdoor
environments at different weather conditions like drones would
exhibit, the set of parameters and requirements might be very
different from other common use cases for depth sensors
as found in indoor scenarios like finger tracking or gesture
recognition.

In this paper, we present the encountered challenges of using
depth cameras on drones and how we overcame them. Our
contributions are:

• Description of stereo camera issues on drones
• Solutions to minimize the encountered problems
• Release of the solutions as highly optimized open

source code
In the following, we will first give an overview of related

work in the space of drones with different depth cameras.
Next, we describe the use case of the depth sensor on our
drone and issues observed for enabling automatic obstacle
avoidance. After specifying the hardware and software system,
we take a look at incorrect depth values from the used depth
cameras. Having all of this laid out, we provide improvements
against depth outliers through a variety of methods like
calibration, depth camera settings and post-processing methods.

Figure 1. The top image shows the depth map from the scene at the bottom.
The colors are applied depending on the distance in meters as shown in the
scale on the right part of the image. At the light gray wall with thin horizontal
stripes, the algorithm of the depth sensor wrongly estimates an object close to
the camera.

We compare the results of the post-processing steps and provide
a performance analysis of the used algorithms. We discuss
current limitations and give an outlook on further improvements.
Last, we conclude and link to our open source implementation.

II. RELATED WORK

There are various devices to measure depth to other ob-
jects. Options which have also been used on drones include
ultrasonic [1], lidar [2], [3], radar [4] or depth camera-based
systems [5]–[8]. While all of these have their advantages and
drawbacks, we focus in this work on depth camera-based

systems due to their light weight, detailed depth information
and relatively low cost.

In the category of depth cameras, we describe two very
common types and their differences [9].

Time Of Flight (TOF) cameras: a laser or LED is used to
illuminate where the camera is pointing at [10]. As the constant
speed of light is known, the round-trip time of such a light
signal returning to the camera sensor can be used to calculate
an approximate distance. Common advantages of these depth
sensors are simplicity, efficient distance algorithm and their
speed. Their drawbacks show in bright outdoor usage where the
background light might interfere with measurements, potential
interference with other TOF devices and issues at reflections.

Stereo-based depth sensors: these devices are taking two
images with a fixed, known offset between the two image
cameras. Using stereo matching algorithms [11], [12] together
with the known intrinsic and extrinsic parameters of the camera,
they can generate approximate depth values for the image.
Usually, these sensors consume less power compared to TOF
cameras.

III. DRONE USE CASE

To avoid accidents, injuries and crashes, it is very important
for drones to avoid flying into obstacles. Depth cameras help
the drone to "see" the environment. The obstacle avoidance
algorithms that we use are taking the depth image from one
or more depth cameras. As we know the mounted camera
position and orientation on the drone and the GPS location of
the drone, we transform the data from the depth image into
world space. We map those depth values to 3D voxel locations.
For the voxel value, we update the probability of that space to
be occupied. Having the voxel map available, we check the
drone’s heading and velocity against potential obstacles in that
direction. If we find any, we redirect to avoid a collision.

As we found in real-world usage of drones with depth
sensors, there are sometimes issues that the depth values are
not correct and can therefore lead to problems. For example,
suddenly, a wrong, very close depth value appears in front of
the drone. This might be interpreted as an obstacle to which our
safety distance is not kept and strongly violated. A common
reaction might be to move the drone quickly away from that
obstacle or to at least not move further into the direction of
the obstacle. For a drone operator on the ground observing
what happens in the sky, such behavior of the drone is not
comprehensive. The operator sees that there is no obstacle, yet
the drone behaves in an undesired way trying to avoid invisible
objects.

IV. SYSTEM

In the following scenarios, we use the Intel NUC7i7BNH
platform with the Intel Core i7-7567U (2 cores, 4 threads) at
a base frequency of 3.5 GHz with 16 GB memory. Given
the requirements of being able to work outside in bright
environments and the goal of having a low power consumption,
we decided to use a stereo-based depth sensor. The model
is Intel RealSense [13] D435i with the firmware 5.11.6.250.

Figure 2. Drone with depth sensor

Figure 3. A case in which parts of the blinds on the windows are wrongly
indicating depth which is very close to the camera. Near distances are
represented in an intense red, while the farther away it gets, the coloring
changes to blue.

The system runs Ubuntu 18.04 with the Intel RealSense SDK
2.0 (build 2.23.0). Some of the visualizations are generated
with the RealSense Viewer 2.23.0. For image operations,
we use OpenCV 3.4.5. The depth camera is mounted on
an Intel Falcon 8+ octocopter (Figure 2). We use a camera
resolution of 848× 480 pixels at 30 frames per second.

V. INCORRECT DEPTH VALUES

As mentioned in Section III, we discovered some cases in
which depth values in the depth map were not accurate and
disturb the obstacle avoidance algorithms. Figure 1 shows one
example. We provide another case in Figure 3.

Both cases have in common that there is a structure with
repetitive content which can easily disturb stereo feature
matching as almost the same color values are frequently
repeated in neighboring areas.

VI. IMPROVEMENTS

In this section, we provide improvements for the previously
described depth maps with some incorrect depth values.

A. Calibration

Depth cameras are shipped with a previously executed
factory calibration. Due to the stress on the modules endured
by a potential air freight delivery with different pressure
conditions at such high altitudes and potential shaking during
transportation, it can happen that physical properties of the
device slightly differ from the state it was during calibration.

At least in one case we found significant improvements
when running a local calibration on the device. As test setup,
we used a carpet intended for children to play with small toy
vehicles on it. The carpet provides strong features which can
be picked up by the stereo algorithm. For this test, we used
very strict camera settings which rejected depth values if their
confidence was not extremely high.

For the Intel RealSense D435i camera, there are tools that
allow a recalibration within a few minutes. As shown in
Figure 4, this can increase the confidence in depth values
and therefore provide more valid inputs. In most real-world
cases the differences will not be as high as illustrated here, but
this shows how important an accurate camera calibration is.

B. Depth Camera Settings

As a guideline for outdoor depth sensing as used on drones,
we prefer having fewer depth values at a high confidence
compared to receiving many values which are less certain to
be valid. In the RealSense D435i camera, there are various
settings affecting this which can be modified through visual
tools like the RealSense Viewer and can be stored in .json files.
Those configuration files can be uploaded in the application
via API calls. We describe the most relevant changes in the
settings that we made compared to the default. To give a better
understanding of the parameters on the resulting images, we
show different settings in the Appendix.

texturecountthresh, texturedifferencethresh: These set-
tings describe how much difference in intensity in the gray scale
stereo image needs to be to determine a valid feature. In outdoor
usage, the sky and clouds provide an almost similar color
with only small deviations. Walls captured during inspection
flights might have areas of the same color which do not make
strong features. To increase the confidence on depth values,
we increased the values of texturecountthresh, which sets how
many pixels of evidence of texture are required from 0 to 4 and
set the value of texturedifferencethresh, how big a difference
is required for evidence of texture, to 50.

secondpeakdelta: When analyzing the disparities of an area
in the stereo images for a match, there might be one clear
candidate indicating a large peak in terms of correlation. In
some cases, multiple candidates could be viable at different
peak levels. The second peak threshold determines how big
the difference from another peak needs to be, in order to
have confidence in the current peak being the correct one. We
increased this value from a default of 645 to 775.

Figure 4. The top gray scale image shows the carpet for toys as target in a
test setup. The middle image shows the depth values before manual calibration
with camera settings for very high confidence of depth values. The bottom
image shows the depth values after recalibration.

scanlinep1, scanlinep1onediscon, ...: For finding the best
correlation form the disparities, a penalty model is used as
described in [14]. In addition to estimating the validity of a
current correlation, neighboring areas with their estimate are
analyzed and taken into account. A small difference can be
expressed in a small penalty (scanlinep1 = 30) while a larger
difference leads to a second penalty value (scanlinep2 = 98).
Both penalties are added together in an internal cost model for
the likelihood of a correlation to be the correct one. Further
fine tuning on large color or intensity differences between the
left and right image can be set with scanlinep1onediscon and
scanlinep1twodiscon.

medianthreshold: When looking for a peak regarding
correlation, we want it to have a significantly large value

to clearly differ from the median of other correlation values.
While the default is set to 796, we found that we were able
to lower this value safely to 625. This did not introduce any
noticeable artefacts, but made more valid depth values available.

autoexposure-setpoint: The autoexposure setting can be
changed to deliver a darker (lower value) or brighter image. It
is set to 1500 by default. For outdoor usages, we found the
brighter value of 2000 to work better. Details in the sky like
clouds are not relevant for us, so if this part is overexposed,
it has no negative effect. On the positive side, increasing
brightness makes darker objects like the bark on a tree brighter
and enables better feature detection on it.

We present the full .json file with all settings in the Appendix.

C. Post-processing of Depth Images

With a good depth camera calibration and the modified
parameters, we area able to get good images with relatively
high confidence features. However, for our purpose this is still
not enough and cases with invalid depth values have still been
observed. We tried many different other parameter settings, but
in the end, we were not able to remove the outliers just through
parameters without losing almost all other valid depth data.
Instead, to handle the invalid depth values, we are applying
post-processing steps to the received depth image. As described
in [15], there are various known methods for post-processing
like downsizing the image in certain ways to smooth out camera
noise, applying edge-preserving filtering techniques or doing
temporal filtering across multiple frames.

In our outdoor drone use case, we apply different post-
processing methods. For the ones we describe, we additionally
require reading out the left rectified camera image stream which
is synchronized with the depth image. In our depth camera
model this image is in an 8-bit gray scale format. The pseudo-
code for our post-processing operations is in this listing:

1 c o n s t i n t reduceX = 4 ;
2 c o n s t i n t reduceY = 4 ;
3 c v R e s i z e G r a y s c a l e I m a g e (reduceX , reduceY) ;
4 res izeDepthImageToMinimumInBlock (reduceX , reduceY) ;
5

6 / / c r e a t e edge mask
7 cvSchar rX (grayImage , maskEdgeX) ;
8 cvSchar rY (grayImage , maskEdgeY) ;
9

10 conve r tSca l eAbsX (maskEdgeX) ;
11 conve r tSca l eAbsY (maskEdgeY) ;
12

13 cvAddWeighted (maskEdgeX , maskEdgeY , maskEdge , 0 . 5) ;
14 c v T h r e s h o l d (maskEdge , 192 , 255 , THRESH_BINARY) ;
15

16 / / c r e a t e c o r n e r mask
17 c v H a r r i s (g r a y I m a g e F l o a t , maskCorners , 2 , 3 , 0 . 0 4) ;
18 c v T h r e s h o l d (maskCorners , 300 , 255 , THRESH_BINARY) ;
19

20 / / combine bo th masks
21 c v B i t w i s e O r (maskCombined , maskEdge , maskCorners) ;
22

23 / / a p p l y m o r p h o l o g i c a l open ing
24 cvMorphOpen (maskCombined , MORPH_ELLIPSE (3 , 3)) ;
25

26 / / u se mask on d e p t h image
27 dep thImage . cvCopy (d e p t h I m a g e F i n a l , maskCombined) ;

Figure 5. Steps for creating the edge mask. The top row shows the Scharr
images in X and Y dimension. The second row applies the absolute function
to the values from the top row. The last row shows left the added images from
the middle row. On the right, it shows the final mask with the applied binary
threshold function.

In the lines 1-4, we are downsizing both the depth and the
camera image by a factor of four in each dimension. For the
depth map, we search within a 4x4 pixel block for the closest
depth value which is not zero, meaning not invalid. We take
this value as the downsized pixel value. The reason for this
selection is that for obstacle avoidance our most important
information is which object might be the closest to us. For
the gray scale image, we can use regular OpenCV downsizing.
In our case, nearest-neighbor downsizing was sufficient, but,
depending on the performance budget, bilinear filtering might
be chosen as well. After resizing, the depth image and camera
image have been lowered from a resolution of 848 × 480
pixels to 242× 120 pixels. With 16 times fewer pixels, further
processing on the images will be much faster.

Edges and corners are very robust features for stereo
matching. To achieve even higher confidence in the depth
values, we want to mask out all depth values which do not
have edges or corners in the corresponding area of the gray
scale image. To do this, we create an image mask for edges and
one for corners. For edge detection, we use the OpenCV Scharr
operator [16] as shown in lines 7 and 8 of the pseudo-code
listing. For the intermediate images in X and Y dimension,
we apply the absolute function and convert them into an 8-bit
format (line 10, 11). We add both images together and apply
a binary threshold on the mask (lines 13, 14). Using the case
from Figure 3, we visualize these processing steps in Figure 5.

For creating the corner mask, we use the Harris Corner
Detector [17] in OpenCV (line 17). Again, we apply a threshold
in the line below. We combine the mask for edges with the
mask for corners in line 21. To eliminate too small areas in
the mask, we apply the morphological opening operation on
the mask which applies an erosion followed by a dilation on
the image (line 24). We apply the final mask to the resized
depth image. Only where positive values are in the mask, the

Figure 6. Steps for creating the corner mask. Top left shows the corners as
detected by Harris. On the right, the binary threshold is applied to that. In the
second row on the left, the combined edge and corner mask is shown. On the
right side the final mask is shown after the opening function has been applied.
The bottom row shows left the original, resized depth map. On the right, the
mask has been applied to it. This is the final version of the depth map without
outliers of wrong depth.

depth value will be copied into the final image, otherwise it
will be set to zero, indicating no valid depth information (line
27). We visualize these steps in Figure 6.

D. Results

Using recalibration, tuning of the depth camera parameters
and applying the post-processing steps as described, we got a
much higher quality depth map as the example with the result
in Figure 6 (bottom right) shows. A comparison between the
before and after images with a resolution of 242×120 = 29040
pixels, is shown in Table I.

Table I
COMPARING THE BEFORE AND AFTER IMAGE FROM FIGURE 6 (BOTTOM).

THE FIRST NUMBER INDICATES THE AMOUNT OF PIXELS IN AN IMAGE WITH
A RESOLUTION OF 242× 120 PIXELS. THE SECOND NUMBER SHOWS THE

PERCENTAGE OF PIXELS IN THAT IMAGE.

original our method
number of depth values 7375 (25%) 2802 (10%)
number of outliers 94 (0.3%) 0 (0%)

While the image loses more than half of its valid depth
information with our method, it also eliminates all outliers. As
it can be seen in comparing both images, the loss happens
relatively evenly across areas. For our obstacle avoidance this
means that we still have enough information in these areas to be
aware of potential objects in our path. To repeat the statement
we made before: we prefer having fewer depth values at a high
confidence compared to receiving many values which are less
certain to be valid. Using our method, this goal is achieved.

We tested our method on multiple hours of log files from
various drone flights. In almost all cases, we were able to

filter out wrong depth measures that would have impacted the
drone’s obstacle avoidance to work correctly.

E. Performance

The post processing steps will increase the required compute
load. We optimized our code to make use of AVX2 functions for
our custom-written resizing function which we make available
as open source. OpenCV, compiled with the right flags, will
use AVX2 intrinsics for the relevant functions. We measured
how much time the individual steps for post-processing took
for processing 30 frames (the amount of frames we receive
within one second from the depth camera) and show this in
Table II.

Table II
TIME IN MS FOR POST-PROCESSING STEPS FOR 30 FRAMES.

resize gray scale 1.2
resize depth map 1.5
create edge mask 2.9
create corner mask 9.3
combine masks 1.8
opening mask 1.3
apply mask 0.3

total 18.3

VII. LIMITATIONS AND OUTLOOK

There are still some rare cases in which wrong depth
makes it through all the suggested methods. The area of
pixels with wrong depth is already much smaller with our
methods. To increase the robustness against these rare outliers,
we recommend using the depth data in a spatial mapping like
in a 3D voxel map. Popular libraries like Octomap [18] are
a good starting point. Before values are entered into such a
spatial structure, it might be required to have multiple positive
hits for occupancy over multiple frames and/or observations
of obstacles from slightly different perspectives. In the case of
drones, movement is pretty common and even when holding
the position, minimal movements from wind might already
change what the depth camera delivers. The position of a wrong
depth value and its corresponding 3D space might change by
such a small movement. As the incorrect depth values are not
geometrically consistent, they might be filtered out through the
spatial mapping technique.

While the performance impact of our routines is already
relatively low for a modern PC-based system, the overhead
might still hurt performance on highly embedded systems. In
future versions of depth cameras, it might be a desired step to
have our described methods directly implemented in hardware.

VIII. CONCLUSION

In this work, we described the issues of receiving wrong
depth data that was observed in some drone flights outdoors.
Through proper calibration, modification of internal depth cam-
era parameters and a series of post-processing steps on the depth
map, we were able to clean up almost all outliers with wrong

depth. The resulting depth data can be used for robust obstacle
avoidance with spatial mapping of the environment. Our highly
optimized algorithms for post-processing are released as open
source under https://github.com/IntelRealSense/librealsense.

REFERENCES

[1] N. Gageik, T. Müller, and S. Montenegro, “Obstacle
Detection and Collision Avoidance using Ultrasonic
Distance Sensors for an Autonomous Quadrocopter”,
University of Wurzburg, Aerospace information Technol-
ogy Wurzburg, pp. 3–23, 2012.

[2] L. Wallace, A. Lucieer, C. Watson, and D. Turner, “De-
velopment of a UAV-LiDAR System with Application
to Forest Inventory”, Remote Sensing, vol. 4, no. 6,
pp. 1519–1543, 2012. DOI: 10.3390/rs4061519.

[3] A. Ferrick, J. Fish, E. Venator, and G. S. Lee, “UAV Ob-
stacle Avoidance using Image Processing Techniques”,
in IEEE International Conference on Technologies for
Practical Robot Applications (TePRA), 2012, pp. 73–78.
DOI: 10.1109/TePRA.2012.6215657.

[4] K. B. Ariyur, P. Lommel, and D. F. Enns, “Reactive
Inflight Obstacle Avoidance via Radar Feedback”, in
Proceedings of the 2005 American Control Conference,
IEEE, pp. 2978–2982. DOI: 10 . 1109 / ACC . 2005 .
1470427.

[5] K Boudjit, C Larbes, and M Alouache, “Control of Flight
Operation of a Quad rotor AR. Drone Using Depth Map
from Microsoft Kinect Sensor”, International Journal of
Engineering and Innovative Technology (IJEIT), vol. 3,
pp. 15–19, 2013.

[6] A Deris, I Trigonis, A Aravanis, and E. Stathopoulou,
“Depth cameras on UAVs: A first approach”, The Inter-
national Archives of Photogrammetry, Remote Sensing
and Spatial Information Sciences, vol. 42, p. 231, 2017.
DOI: 10.5194/isprs-archives-XLII-2-W3-231-2017.

[7] I. Sa, M. Kamel, M. Burri, M. Bloesch, R. Khanna,
M. Popovic, J. Nieto, and R. Siegwart, “Build Your Own
Visual-Inertial Drone: A Cost-Effective and Open-Source
Autonomous Drone”, IEEE Robotics & Automation
Magazine, vol. 25, no. 1, pp. 89–103, 2018. DOI: 10.
1109/MRA.2017.2771326.

[8] S. Kawabata, K. Nohara, J. H. Lee, H. Suzuki, T.
Takiguchi, O. S. Park, and S. Okamoto, “Autonomous
Flight Drone with Depth Camera for Inspection Task
of Infra Structure”, in Proceedings of the International
MultiConference of Engineers and Computer Scientists,
vol. 2, 2018.

[9] H. Sarbolandi, D. Lefloch, and A. Kolb, “Kinect Range
Sensing: Structured-Light versus Time-of-Flight Kinect”,
Computer vision and image understanding, vol. 139,
pp. 1–20, 2015. DOI: 10.1016/j.cviu.2015.05.006.

[10] P. Zanuttigh, G. Marin, C. Dal Mutto, F. Dominio,
L. Minto, and G. M. Cortelazzo, “Time-of-Flight and
Structured Light Depth Cameras”, Technology and
Applications, 2016. DOI: 10.1007/978-3-319-30973-6.

[11] S. T. Barnard and M. A. Fischler, “Computational
Stereo”, 1982. DOI: 10.1145/356893.356896.

[12] T. Kanade and M. Okutomi, “A Stereo Matching
Algorithm with an Adaptive Window: Theory and
Experiment”, in Proceedings. 1991 IEEE International
Conference on Robotics and Automation, pp. 1088–1095.
DOI: 10.1109/ROBOT.1991.131738.

[13] L. Keselman, J. Iselin Woodfill, A. Grunnet-Jepsen,
and A. Bhowmik, “Intel RealSense Stereoscopic Depth
Cameras”, in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops,
2017, pp. 1–10. DOI: 10.1109/CVPRW.2017.167.

[14] M. Michael, J. Salmen, J. Stallkamp, and M. Schlips-
ing, “Real-time Stereo Vision: Optimizing Semi-Global
Matching”, in IEEE Intelligent Vehicles Symposium,
2013, pp. 1197–1202. DOI: 10.1109/IVS.2013.6629629.

[15] A. Grunnet-Jepsen and D. Tong, Depth Post-Processing
for Intel RealSense D400 Depth Cameras, https://www.
intel . com / content / dam / support / us / en / documents /
emerging-technologies/intel-realsense-technology/Intel-
RealSense-Depth-PostProcess.pdf.

[16] H. Scharr, “Optimale Operatoren in der digitalen Bild-
verarbeitung”, 2000. DOI: 10.11588/heidok.00000962.

[17] K. G. Derpanis, “The Harris Corner Detector”, York
University, 2004.

[18] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss,
and W. Burgard, “Octomap: An Efficient Probabilistic
3D Mapping Framework Based on Octrees”, Autonomous
robots, vol. 34, no. 3, pp. 189–206, 2013. DOI: 10.1007/
s10514-012-9321-0.

APPENDIX

To give a better overview of the impact of changing some of
the mentioned RealSense depth camera parameters, we provide
examples of the resulting images from Figure 7 to Figure 11. In
order to find the best matching values, this was tested and fine-
tuned on various environments: natural, industrial, residential
and mixtures of those. The height was varied between looking
at objects almost at the same height and from a much higher
perspective, e.g. 30 to 50 meters above ground. When testing
different parameters on the ground, we recommend using the
Intel RealSense Viewer in which the parameters can be changed
in real-time through sliders to directly see the impact on the
images.

https://github.com/IntelRealSense/librealsense
https://doi.org/10.3390/rs4061519
https://doi.org/10.1109/TePRA.2012.6215657
https://doi.org/10.1109/ACC.2005.1470427
https://doi.org/10.1109/ACC.2005.1470427
https://doi.org/10.5194/isprs-archives-XLII-2-W3-231-2017
https://doi.org/10.1109/MRA.2017.2771326
https://doi.org/10.1109/MRA.2017.2771326
https://doi.org/10.1016/j.cviu.2015.05.006
https://doi.org/10.1007/978-3-319-30973-6
https://doi.org/10.1145/356893.356896
https://doi.org/10.1109/ROBOT.1991.131738
https://doi.org/10.1109/CVPRW.2017.167
https://doi.org/10.1109/IVS.2013.6629629
https://www.intel.com/content/dam/support/us/en/documents/emerging-technologies/intel-realsense-technology/Intel-RealSense-Depth-PostProcess.pdf
https://www.intel.com/content/dam/support/us/en/documents/emerging-technologies/intel-realsense-technology/Intel-RealSense-Depth-PostProcess.pdf
https://www.intel.com/content/dam/support/us/en/documents/emerging-technologies/intel-realsense-technology/Intel-RealSense-Depth-PostProcess.pdf
https://www.intel.com/content/dam/support/us/en/documents/emerging-technologies/intel-realsense-technology/Intel-RealSense-Depth-PostProcess.pdf
https://doi.org/10.11588/heidok.00000962
https://doi.org/10.1007/s10514-012-9321-0
https://doi.org/10.1007/s10514-012-9321-0

Figure 7. Gray scale images with different auto exposure values: 1500, 2000 (ours), 2500.

Figure 8. Depth images with different secondpeakdelta values: 400, 645, 775 (ours).

Figure 9. Depth images with different penalty values (scanlinep2onediscon): 50, 105 (ours), 235.

Figure 10. Depth images with different values for texturecountthresh and texturedifferencethresh: (0, 0), (4, 50) (ours), (8, 100).

Figure 11. Depth images with different values for medianthreshold: 500, 625 (ours), 796.

The following is the text for the .json file that can be loaded
in Intel RealSense tools and API calls to configure the cameras
as described in the paper.

"aux-param-autoexposure-setpoint": "2000",
"aux-param-colorcorrection1": "0.298828",
"aux-param-colorcorrection10": "0",
"aux-param-colorcorrection11": "0",
"aux-param-colorcorrection12": "0",
"aux-param-colorcorrection2": "0.293945",
"aux-param-colorcorrection3": "0.293945",
"aux-param-colorcorrection4": "0.114258",
"aux-param-colorcorrection5": "0",
"aux-param-colorcorrection6": "0",
"aux-param-colorcorrection7": "0",
"aux-param-colorcorrection8": "0",
"aux-param-colorcorrection9": "0",
"aux-param-depthclampmax": "65536",
"aux-param-depthclampmin": "0",
"aux-param-disparityshift": "0",
"controls-autoexposure-auto": "True",
"controls-autoexposure-manual": "8500",
"controls-depth-gain": "16",
"controls-laserpower": "0",
"controls-laserstate": "on",
"ignoreSAD": "0",
"param-autoexposure-setpoint": "2000",
"param-censusenablereg-udiameter": "9",
"param-censusenablereg-vdiameter": "9",
"param-censususize": "9",
"param-censusvsize": "9",
"param-depthclampmax": "65536",
"param-depthclampmin": "0",
"param-depthunits": "1000",
"param-disableraucolor": "0",
"param-disablesadcolor": "0",
"param-disablesadnormalize": "0",
"param-disablesloleftcolor": "0",
"param-disableslorightcolor": "1",
"param-disparitymode": "0",
"param-disparityshift": "0",
"param-lambdaad": "751",
"param-lambdacensus": "6",
"param-leftrightthreshold": "10",
"param-maxscorethreshb": "1423",
"param-medianthreshold": "625",
"param-minscorethresha": "4",
"param-neighborthresh": "108",
"param-raumine": "6",
"param-rauminn": "3",
"param-rauminnssum": "7",
"param-raumins": "2",
"param-rauminw": "2",
"param-rauminwesum": "12",
"param-regioncolorthresholdb": "0.784736",

"param-regioncolorthresholdg": "0.565558",
"param-regioncolorthresholdr": "0.985323",
"param-regionshrinku": "3",
"param-regionshrinkv": "0",
"param-robbinsmonrodecrement": "5",
"param-robbinsmonroincrement": "5",
"param-rsmdiffthreshold": "1.65625",
"param-rsmrauslodiffthreshold": "0.71875",
"param-rsmremovethreshold": "0.809524",
"param-scanlineedgetaub": "13",
"param-scanlineedgetaug": "15",
"param-scanlineedgetaur": "30",
"param-scanlinep1": "30",
"param-scanlinep1onediscon": "76",
"param-scanlinep1twodiscon": "86",
"param-scanlinep2": "98",
"param-scanlinep2onediscon": "105",
"param-scanlinep2twodiscon": "33",
"param-secondpeakdelta": "775",
"param-texturecountthresh": "4",
"param-texturedifferencethresh": "50",
"param-usersm": "1",
"param-zunits": "1000"

	Introduction
	Related Work
	Drone Use Case
	System
	Incorrect Depth Values
	Improvements
	Calibration
	Depth Camera Settings
	Post-processing of Depth Images
	Results
	Performance

	Limitations and Outlook
	Conclusion
	Appendix

