
Programmer's Guide

July 2021

Version 2.11.1.0

INTEL CONFIDENTIAL

Copyright (2018 - 2021) Intel Corporation.

This software and the related documents are Intel copyrighted materials, and your use of them is governed by the express license under which they

were provided to you ("License"). Unless the License provides otherwise, you may not use, modify, copy, publish, distribute, disclose or transmit this

software or the related documents without Intel's prior written permission.

Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which

includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation.

Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or

retailer or learn more at intel.com.

Intel technologies may require enabled hardware, specific software, or services activation. Check with your system manufacturer or retailer.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published

specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular

purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product

specifications and roadmaps.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or visit

www.intel.com/design/literature.htm.

Intel and the Intel logo Xeon, Core trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

© 2021 Intel Corporation. All rights reserved.

http://www.intel.com/design/literature.htm

Contents

1 Scope ... 9

2 Software Architecture and Calibration Flow ... 10

2.1 Software Stack ... 10
2.2 Calibration API ... 11
2.3 API Package Location ... 11
2.4 API Package Structure .. 11
2.5 Compiling Examples ... 12
2.6 Calibration Parameters ... 14
2.7 Dynamic Calibration with Intel Algorithms .. 15

2.7.1 Target-less ... 15
2.7.2 Target-based .. 17
2.7.3 Hybrid .. 20
2.7.4 Image Formats Used in Dynamic Calibration 21

2.8 Depth/RGB Custom Calibration with User Algorithms .. 21
2.9 Fisheye Custom Calibration with User Algorithms ... 22

3 Calibrating Depth/RGB with Intel Algorithm through Dynamic Calibration API 24

3.1 Targeted Calibration .. 24
3.2 Target-less Calibration .. 25
3.3 Hybrid Calibration ... 26
3.4 Sample Dynamic Calibrator Application ... 28

4 Depth/RGB Custom Calibration R/W .. 29

4.1 Interfaces .. 29
4.1.1 Initialize .. 29
4.1.2 WriteCustomCalibrationParameters .. 29
4.1.3 ReadCalibrationParameters .. 30
4.1.4 ResetDeviceCalibration .. 31
4.1.5 ReadCalibrationRawData .. 31
4.1.6 WriteCalibrationRawData ... 32

4.2 Read/Write through Custom Calibration R/W Interfaces 32
4.3 CustomRW for Custom Calibration Parameters Read/Write 35

4.3.1 CustomCalibration Example for Depth/RGB Custom Calibration 41

5 Fisheye Custom Calibration R/W ... 42

5.1 Handling Fisheye Calibration Data with CustomRW Tool 42
5.1.1 Dependency ... 42
5.1.2 Read and Write Custom Fisheye Data ... 42

5.2 Read and Write through API ... 44
5.2.1 Initialize .. 44
5.2.2 ReadFECustomData .. 45
5.2.3 WriteFECustomData ... 45
5.2.4 Example .. 46

6 Phone Target App Integration .. 48

6.1 Target .. 48
6.2 Target Generation Algorithm and API .. 49
6.3 Phone App .. 50
6.4 Devices Validated .. 50

7 Dynamic Calibration API Definitions .. 52

7.1 Attributes .. 54
7.2 Initialize .. 54
7.3 InitializeRgbCalibrator .. 55
7.4 AddImages .. 56
7.5 GetLastPhoneROILeftCamera ... 57
7.6 GetLastPhoneROIRightCamera .. 57
7.7 GetLastTargetDistance .. 58
7.8 AccessGridFill ... 58
7.9 GetLastFrameFeaturesGrid ... 59
7.10 GetGridLevels ... 59
7.11 GetGridLevelScore ... 59
7.12 IsGridFull .. 60
7.13 IsOutOfCalibration ... 60
7.14 GetCalibrationError .. 61
7.15 IsRectificationPhaseComplete ... 61
7.16 IsScalePhaseComplete .. 61
7.17 NumOfImagesCollected .. 61
7.18 SetIntermediateRectificationCalibration ... 62
7.19 GoToScalePhase ... 62
7.20 GetPhase .. 62
7.21 GetTargetedCalibrationCorrection.. 62
7.22 GetRGBCalibrationCorrection.. 63
7.23 UpdateCalibrationTables ... 63
7.24 GetVersion .. 64

8 Intel® RealSense™ Dynamic Target Tool Phone App Technical Specification 65

8.1 Introduction ... 65
8.2 App Flow and Requirements ... 65

8.2.1 Overview ... 65
8.2.2 Target Image .. 67
8.2.3 Target Composition Algorithm API (Android Only) 68
8.2.4 Target Image Display... 69
8.2.5 Target Image Accuracy Check .. 70
8.2.6 Display Control .. 72
8.2.7 Display Zoom on Apple IOS Devices .. 72
8.2.8 App Name .. 73
8.2.9 Device Information Page .. 73

8.3 Supported Platforms .. 75
8.3.1 Device OS .. 75
8.3.2 Devices ... 75

Figures

Figure 2-1 Calibration Software Stack .. 10
Figure 2-2 Target-less Calibration Flow .. 16
Figure 2-3 Gimbal Flow with Target-less Calibration ... 16
Figure 2-4 Target Image ... 18
Figure 2-5 Target-based Dynamic Calibration... 19
Figure 2-6 Targeted Dynamic Calibration Integrated Two Phase Flow 19
Figure 2-7 Hybrid Dynamic Calibration Integrated Two (or Three) Phase Flow 20
Figure 2-8 Depth/RGB Custom Calibration R/W with Dynamic Calibration API 22
Figure 2-9 Fisheye Custom Calibration R/W with Dynamic Calibration API 23
Figure 5-1 Read Fisheye Custom Data on Selected Device and Display on Screen 43
Figure 5-2 Read Fisheye Custom Data into a Binary File... 43
Figure 5-3 Write Fisheye Custom Data from a Binary File to the Device 44
Figure 9-1 dynamic calibration simplified flow .. 66
Figure 9-2 target image ... 67
Figure 9-3 target displayed on iPhone 6 ... 70
Figure 9-4 Target Image Accuracy Check Points .. 71
Figure 9-5 target image ... 72
Figure 9-6 target display screen on iPhone 6 .. 74
Figure 9-7 info page display screen on iPhone 6 .. 74

Revision History

Revision
Number

Description Revision Date

2.5.2.0 First document for Calibration Tool version 2.5.2.0 Jan 2018

2.6.4.0 Support RGB calibration March 2018

2.6.8.0 Support D435i

Custom Calibration Data R/W API supports IMU custom data
R/W

Support calibration raw data and fisheye custom data
read/write

December 2018

2.8.0.0 Advanced calibration processes for robotics March 2019

2.11.0.0 Support Intel® RealSense™ Depth Camera D455

New DC algo compatible with production calibration algo v5.1

Support Linux (Ubuntu 16.04 and Ubuntu 18.04) on ARM
platforms (Nvidia Jetson TX2, Xavier, and Firefly RK3399)

Fix libpng dependency issue on Ubuntu 18.04

Supports Ubuntu 18.04 kernel 5.x

Calibration API is combined into Calibration Tool package

July 2020

2.11.1.0 Support Thermal Compensation on D455 July 2021

§§

Scope

1 Scope

This document is the programmer’s guide of the Calibration API for Intel® RealSense™

technology. The API is an extension of the Calibration Tools to enable users developing

their own calibration applications based on Intel calibration algorithms or user’s own

custom algorithms on Intel® RealSense™ Product Family D400 Series devices.

The Calibration API for Intel® RealSense™ technology includes the following:

• Dynamic Calibration API

This is a set of interfaces and libraries to calibrate the D400 devices with the

same Intel algorithms in the Intel® RealSense™ Dynamic Calibrator. The API

supports both targeted and target-less calibration. Users can use the API to

build their own calibration application to fit into their specific usage needs.

The API also includes custom calibration data read/write interfaces to enable

calibration with user chosen non-Intel calibration algorithms.

On very limited device SKU, this API also supports custom calibration data

read/write for fisheye.

• Examples

Several working examples are provided with source code as reference to use

the Calibration API, including sources for the Intel® RealSense™ Dynamic

Calibrator and CustomRW for Intel® RealSense™ technology tools.

Important Notes: Users are free to use the example code, but the Intel

calibration algorithms contained in the API library is not open source and only

available as binary form. The primary goal is to enable users to develop their

calibration application with the embedded Intel calibration algorithm or their

custom calibration algorithms.

§§

Software Architecture and Calibration Flow

2 Software Architecture and Calibration

Flow

2.1 Software Stack

The following diagram illustrates the calibration software stack and its components.

Figure 2-1 Calibration Software Stack

Dynamic Calibration API: A set of APIs that provide interfaces for application to use

dynamic calibration algorithms in real time re-calibration. It also contains interfaces for

custom calibration R/W for Depth/RGB/Fisheye.

Dynamic Calibration Algorithms: A software library that contains the real time re-

calibration algorithms, for example, rectification and scale calibration.

LibRealSense API: open source camera access API for capture images, read/write to

device and other camera controls.

Software Architecture and Calibration Flow

Camera Device: Any supported Intel RealSense D400 series Depth Cameras with

proper FW updated.

2.2 Calibration API

The Calibration API is part of the Calibration Tool package and can be copied from the

installed directory. Please refer to chapter Developing Custom Apps with Calibration

API in the User’s Guide for details.

2.3 API Package Location

A compressed package of the interface and examples is included in the tool

installation.

On Linux:

/usr

 |

 |----- share

 | |---- doc

 | |….. librscalibrationtool

 | |

 | |---- api

 | |---- DynamicCalibrationAPI-Linux-2.11.0.0.tar.gz

On Windows:

C:\Program Files\Intel\CalibrationToolAPI

 |-------- 2.11.0.0

 | |

 | |-------- api

 | | |-------- DynamicCalibrationAPI.Zip

2.4 API Package Structure

Copy DynamicCalibrationAPI-Linux-2.11.0.0.tar.gz or DynamicCalibrationAPI.Zip to

your working folder and unzip it into similar directory structure as below:

DynamicCalibrationAPI

 |

 |---- 2.11.0.0

 | |---- CMakeLists.txt

 | |

 | |---- lib

Software Architecture and Calibration Flow

 | | |---- libDSDynamicCalibrationAPI.so or

DSDynamicCalibrationAPI.dll

 | |

 | |…… examples

 | | |---- DynamicCalibrator

 | | |---- CustomRW

 | | |---- CustomCalibration

 | | |---- rs-calibration-converter

 | | |---- simple-rw

 | | |---- simple-fe

 | |

 | |----Include

 | | |---- DSDynamicCalibration.h

 | | |---- DSOSUtils.h

 | | |---- DSShared.h

 | | |---- DSCalData.h

 | |

 | |…… attributions.txt

 | |.….. License.txt

 | |…… README.md

 | |…… target

 | |---- librealsense

 | |---- 3rdparty

Notes:

• API - libDSDynamicCalibrationAPI.so or DSDynamicCalibrationAPI.DLL is the

calibration API library and DSDynamicCalibration.h is its main header file

• Under examples folder

✓ DynamicCalibrator contains the source code for the Dynamic Calibrator

✓ CustomRW contains the source code for the CustomRW tool

✓ CustomCalibration contains sources for an example custom calibration of

depth and RGB sensors with non-Intel algorithms, the example is described

in detail in the Intel RealSense Depth Module D400 Series Custom

Calibration white paper

2.5 Compiling Examples

The API package support cmake.

On Linux:

cd DynamicCalibrationAPI/2.11.0.0

mkdir build

Software Architecture and Calibration Flow

cd build

cmake ..

-- The C compiler identification is GNU 5.4.0

-- The CXX compiler identification is GNU 5.4.0

-- Check for working C compiler: /usr/bin/cc

-- Check for working C compiler: /usr/bin/cc -- works

-- Detecting C compiler ABI info

-- Detecting C compiler ABI info - done

-- Detecting C compile features

-- Detecting C compile features - done

-- Check for working CXX compiler: /usr/bin/c++

-- Check for working CXX compiler: /usr/bin/c++ -- works

-- Detecting CXX compiler ABI info

-- Detecting CXX compiler ABI info - done

-- Detecting CXX compile features

-- Detecting CXX compile features - done

-- CMAKE_SYSTEM_PROCCESSOR=x86_64

-- BUILD_SHARED_LIBS=ON

--

LIBRS_INCLUDE_DIR=/home/gwen/dc/test/DynamicCalibrationAPI/2.10

.4.0/librealsense/include

--

LIBRS_LIBRARY_DIR=/home/gwen/dc/test/DynamicCalibrationAPI/2.10.

4.0/librealsense/lib/linux/x86_64

--

DCAPI_INCLUDE_DIR=/home/gwen/dc/test/DynamicCalibrationAPI/2.1

0.4.0/Include

--

DCAPI_LIBRARY_DIR=/home/gwen/dc/test/DynamicCalibrationAPI/2.10

.4.0/lib

-- Configuring done

-- Generating done

-- Build files have been written to:

/home/gwen/dc/test/DynamicCalibrationAPI/2.10.4.0/build

make -j8

On Windows:

Config cmake for compilaing CalibrationToolAPI\2.11.0.0 and generate project files for

Visual Studio 2015 and x64 platform.

Software Architecture and Calibration Flow

Open rs-dynamic-calibration-api-samples.sln under build directory to compile.

2.6 Calibration Parameters

A set of calibration parameters are used to describe the basic characteristics of the

device.

Intrinsic includes

• Focal length - specified as [fx; fy] in pixels for left, right, and RGB cameras

• Principal point - specified as [px; py] in pixels for left, right, and RGB cameras

• Distortion - specified as Brown's distortion model [k1; k2; p1; p2; k3] for left,

right, and RGB cameras

Extrinsic includes

• RotationLeftRight - rotation from right camera coordinate system to left camera

coordinate system, specified as a 3x3 rotation matrix

• TranslationLeftRight - translation from right camera coordinate system to left

camera coordinate system, specified as a 3x1 vector in millimeters

• RotationLeftRGB - rotation from RGB camera coordinate system to left camera

coordinate system, specified as a 3x3 rotation matrix

• TranslationLeftRGB - translation from RGB camera coordinate system to left

camera coordinate system, specified as a 3x1 vector in millimeters

Software Architecture and Calibration Flow

The left camera is the reference camera and is located at world origin. RGB parameters

only apply to depth modules/cameras with RGB sensor for color, e.g., D415, D435,

D435i, and D455.

2.7 Dynamic Calibration with Intel Algorithms

Dynamic Calibration optimizes extrinsic parameters, i.e., they refer to calibration done

in the field at the user environment with minimal or no user intervention. They are

ONLY extrinsic parameters (translation and rotation) of the camera image with regard

to the main axis system (the axis between the left and right). Intrinsic parameters such

as distortion, field of view, and principal point are not dynamically calibrated.

Dynamic calibration is run under the assumption that it is the re-calibration of the

depth modules/cameras after factory calibration or Intel OEM Calibration, or at least

that the nominal parameters are known.

Two different types of dynamic calibrations algorithms are supported:

• Rectification calibration: aligning the epipolar line to enable the depth pipeline

to work correctly and reduce the holes in the depth image

• Depth scale calibration: aligning the depth frame due to changes in position of

the optical elements

Dynamic Calibration API supports these algorithms in two distinctive operating modes

based on these algorithms: targeted and target-less, each with a different use flow.

Important Notes:

• The Intel® RealSense™ Dynamic Calibrator in the Calibration Tool package

supports only targeted calibration.

• Targeted calibration is the recommended approach because it includes both

rectification and depth scale calibrations and will give more accurate and

consistent results than rectification only calibration done in target-less

calibration.

2.7.1 Target-less

In target-less mode, Dynamic Calibration API supports rectification calibration without

the need of any target.

Its basic flow is summarized as following:

1. Take the rectified images from L and R camera in real-time

2. Extract features from the images

3. Match the features between L and R camera

Software Architecture and Calibration Flow

4. The image is binned into 6x8 grid. Check whether each bin contains enough

corresponding points.

5. The user sees the panel status and moves the device around (bins without

features are blue).

6. Steps 1-6 are iterated until all bins have enough feature points

7. Check rectification error (absolute Y difference). If too large, run a solver to

optimize extrinsic parameters to minimize it.

Figure 2-2 Target-less Calibration Flow

By default, target-less calibration supports 1280x720 resolution images. On devices

with wide angle lenses such as D420, D430, D435, and D435i additional native

resolution 1280x800 is also supported.

If Gimbal is used with target-less calibration, it will operate independently of the above

flow (Figure 7-1) to move the camera automatically based on scene detection results:

Figure 2-3 Gimbal Flow with Target-less Calibration

Software Architecture and Calibration Flow

Gimbal is supported only for target-less calibration at experimental basis. Targeted

calibration is not supported.

Important Notes:

• Targeted calibration is likely to give more accurate results and is therefore the

recommended approach.

• The advantage of target-less calibration is simplicity, no calibration target is

needed. It fits with user cases where calibrating with a target may not be

feasible. The disadvantage is that it calibrates left/right depth but not RGB and

generally less accurate and less consistent than targeted calibration.

2.7.2 Target-based

In targeted mode, Dynamic Calibration API supports depth scale calibration and a

target is required. The target is predefined and can be printed on legal size paper or

displayed on a smartphone through phone app.

An example of the target image is shown below. The printed target image is included in

print-target-fixed-width.pdf which can be downloaded from Intel® RealSense™ product

website or Intel® RealSense™ Calibration Tool package. On phone devices, the actual

image is device dependent and dynamically generated at runtime through the Intel®

RealSense™ Dynamic Target Tool phone app. The app is available on Apple app store or

Google Play.

Software Architecture and Calibration Flow

Figure 2-4 Target Image

As part of the process, the application acquires images of the calibration target and

feed into dynamic calibration algorithm. The process is divided into two consecutive

steps: rectification phase and scale phase, as shown below. The rectification phase fixes

rectification issues so the device stream is corrected with sufficient depth quality for

the next phase to fix scaling issues. The process requires images from simultaneous

depth, rectified left and right images at 1280x720 resolution.

Software Architecture and Calibration Flow

Figure 2-5 Target-based Dynamic Calibration

Figure 2-4 highlights a high level flow and shows how targeted dynamic calibration is

implemented based on the two-phase algorithm:

1) Take the images from L and R camera, including the depth stream (in real-time)

2) Detect the calibration target in both images

3) User moves the printed target or phone so that it covered most of the image,

repeating steps 1-2

4) Once done, user just keeps taking images by positioning the phone anywhere

in the image but must move the phone every time

5) After taking 15 images in step 4, the process is complete

6) The process checks for rectification error (absolute Y difference) but also

compares the measured pattern size with ground truth

Figure 2-6 Targeted Dynamic Calibration Integrated Two Phase Flow

The advantage of targeted calibration is that it’s accurate and consistent. It calibrates

left/right depth as well as RGB (on devices with RGB). The disadvantage is that it

Software Architecture and Calibration Flow

requires calibration target which means it cannot be used in cases where calibrating

with a target is not feasible.

2.7.3 Hybrid

Hybrid Calibration combines best of Target-less Calibration (convenience) and

Targeted Calibration (accuracy) into a single process. It starts with a target-less

calibration to rectifies the left/right images and then followed with a targeted scale only

calibration. It provides flexibility as well as accuracy.

Figure 2-7 Hybrid Dynamic Calibration Integrated Two (or Three) Phase Flow

Software Architecture and Calibration Flow

2.7.4 Image Formats Used in Dynamic Calibration

Targeted Dynamic Calibration requires simultaneous images from depth, rectified left

and right imagers in ZR8L8 format which is only available when the device is running

under advanced mode.

Target-less Dynamic Calibration requires simultaneous rectified images from left and

right imagers in ZR8L8 format.

Format SKU Used Dynamic Calibration Type

ZR8L8

D400

D410

D415

Dynamic Calibration

Targeted Calibration:
1280x720 @ 30 fps

Targeted Dynamic Calibration D420

D430

D435

D435i

Dynamic Calibration

Targeted Calibration:
1280x720 @ 30 fps

RY8_LY8 [16

bits]

D400

D410

D415

Dynamic Calibration

Target-less Calibration:
1280x720 @ 30 fps or
1920x1080 @ 25 fps

Target-less Dynamic Calibration D420

D430

D435

D435i

Dynamic Calibration

Target-less Calibration:

1280x720 @ 30 fps or
1280x800 @ 30 fps

2.8 Depth/RGB Custom Calibration with User Algorithms

In some cases, user may prefer to calibrate the D400 devices with their own algorithms

instead of the Intel algorithms, however, the calibration data will still need to be

updated to the device for the optimization to take effect in actual device performance.

The Custom Calibration R/W interfaces in the Dynamic Calibration API provide

mechanisms to read and write the high-level calibration parameters described in

section 2.2 from/to the device. The API converts the high-level parameters into internal

formats that the device can understand so user only works with those high-level

parameters.

Software Architecture and Calibration Flow

Figure 2-8 Depth/RGB Custom Calibration R/W with Dynamic Calibration API

A detailed example is described in the white paper Intel® RealSense™ Product Family D400 Series

Custom Calibration which is available on Intel® RealSense™ product website:

https://www.intel.com/content/www/us/en/support/articles/000026725/emerging-

technologies/intel-realsense-technology.html

2.9 Fisheye Custom Calibration with User Algorithms

(Supported only on limited devices with a fisheye)

https://www.intel.com/content/www/us/en/support/articles/000026725/emerging-technologies/intel-realsense-technology.html
https://www.intel.com/content/www/us/en/support/articles/000026725/emerging-technologies/intel-realsense-technology.html

Software Architecture and Calibration Flow

Devices in very limited SKU contains a fisheye sensor but it’s not calibrated. User will

need to calibrate the fisheye with their own methods and store the calibration data on

the device and retrieve it later. The fisheye custom data R/W interfaces in Dynamic

Calibration API provides such ability for the data storage on device. The API simply

takes a byte buffer and does not restrict the exact memory layout. User is responsible

for the calibration data format to write to and interpret it after read from the device

through the API.

Figure 2-9 Fisheye Custom Calibration R/W with Dynamic Calibration API

Calibrating Depth/RGB with Intel Algorithm through Dynamic Calibration API

3 Calibrating Depth/RGB with Intel

Algorithm through Dynamic

Calibration API

Dynamic Calibration API supports three usage modes: Intel target-less calibration

algorithm, Intel targeted calibration algorithm, and user custom calibration algorithm.

/** Calibration Modes */

enum CalibrationMode

{

 /** Intel target-less calibration (target-less depth rectification only)*/

 CAL_MODE_INTEL_TARGETLESS = 0,

 /** Intel targeted calibration (targeted depth rectification and targeted depth scale)*/

 CAL_MODE_INTEL_TARGETED = 1,

 /** Intel targeted depth scale calibration only */

 CAL_MODE_INTEL_TARGETED_SCALE_ONLY = 3,

 /** Intel targeted RGB calibration */

 CAL_MODE_INTEL_RGB_CALIB = 4,

 /** User custom algorithm */

 CAL_MODE_USER_CUSTOM = 99 };

Intel target-less calibration, Intel targeted calibration, Intel targeted scale only and RGB

calibration algorithms are built into the library which user adjust parameters but cannot

change the algorithm itself.

3.1 Targeted Calibration

The following calling sequence illustrates a simplified flow for Linux based targeted

calibration which is a two-phase process: rectification and scale phase in sequential

order. Please refer to API documentation and Sample app source code for details

// declare variable for Calibration Tool API and camera access api

DSDynamicCalibration g_Dyncal;

// get camera access handle from librealsense, for example, g_rHal

// initialize camera

// turn off laser projector (laser interferes with target images on phone screen)

// setup camera streaming resolution and frame rate for left/right/depth images

Calibrating Depth/RGB with Intel Algorithm through Dynamic Calibration API

// initialize Calibration Tool API for targeted calibration

g_Dyncal.Initialize(g_rHal,

DynamicCalibrationAPI::DSDynamicCalibration::CAL_MODE_INTEL_TARGETED,

g_width, g_height, false);

// start capture with a callback function

// first phase - rectification

// in the callback function, check if calibration is completed and add images to

Calibration Tool API for processing

while (!g_Dyncal.IsGridFull())

{

 g_Dyncal.AddImages(leftImage, rightImage, depthImage, timeStamp);

}

// once first phase is completed, get the intermediate result and apply it to current

stream on device

g_Dyncal. SetIntermediateRectificationCalibration ()

// switch to second phase – scale

g_Dyncal.GoToScalePhase();

// add left/right/depth images to Calibration Tool API until scale phase is completed

while(!g_Dyncal.IsScalePhaseComplete())

{

 g_Dyncal.AddImages((uint8_t *)leftImage, (uint8_t *)rightImage, (uint16_t

*)depthImage, timeStamp);

}

// when calibration process is completed, stop capture

// get the updated calibration parameters and write to device

g_Dyncal->UpdateCalibrationTables ();

// release handles

3.2 Target-less Calibration

The following calling sequence illustrates a simplified flow for Linux based target-less

calibration. Please refer to API documentation and sample app for details.

// declare variable for dynamic calibration api

DSDynamicCalibration g_Dyncal;

// get camera access handle g_rsHal

Calibrating Depth/RGB with Intel Algorithm through Dynamic Calibration API

// initialize camera

// enable laser projector if available

// setup camera streaming resolution and frame rate for left/right images

// initialize Calibration Tool API for target-less calibration with laser projector on

g_Dyncal.Initialize(g_rsHal,

DynamicCalibrationAPI::DSDynamicCalibration::CAL_MODE_INTEL_TARGETLESS,

g_width, g_height, true);

// start capture with a callback function

// in the callback function, check if calibration is completed and add images to

Calibration Tool API for processing

while (!g_Dyncal.IsGridFull())

{

 g_Dyncal.AddImages(leftImage, rightImage, depthImage, timeStamp);

}

// when calibration is completed, stop capture

// get the updated calibration parameters and write to device

g_Dyncal->UpdateCalibrationTables ();

// release handles

3.3 Hybrid Calibration

The following calling sequence illustrates a simplified flow for Linux based hybrid

calibration. Please refer to API documentation and sample app for details.

// declare variable for dynamic calibration api

DSDynamicCalibration g_Dyncal;

// get camera access handle g_rsHal

// initialize camera

// enable laser projector if available

// setup camera streaming resolution and frame rate for left/right images

// initialize Calibration Tool API for target-less calibration with laser projector on

Calibrating Depth/RGB with Intel Algorithm through Dynamic Calibration API

g_Dyncal.Initialize(g_rsHal,

DynamicCalibrationAPI::DSDynamicCalibration::CAL_MODE_INTEL_TARGETLESS,

g_width, g_height, true);

// start capture with a callback function

// in the callback function, check if calibration is completed and add images to

Calibration Tool API for processing

while (!g_Dyncal.IsGridFull())

{

 g_Dyncal.AddImages(leftImage, rightImage, depthImage, timeStamp);

}

// when calibration is completed, stop capture

// get the updated calibration parameters and write to device

g_Dyncal->UpdateCalibrationTables ();

// release handles

// continues to targeted scale calibration

// initialize camera

// enable laser projector if available

// setup camera streaming resolution and frame rate for depth/left/right images

// initialize Calibration Tool API for targeted scale calibration with laser projector off

g_Dyncal.Initialize(g_rsHal,

DynamicCalibrationAPI::DSDynamicCalibration::CAL_MODE_INTEL_SCALE_ONLY,

g_width, g_height, false);

// start capture with a callback function

// in the callback function, check if calibration is completed and add images to

Calibration Tool API for processing

while (!g_Dyncal.IsGridFull())

{

 g_Dyncal.AddImages(leftImage, rightImage, depthImage, timeStamp);

}

// when calibration is completed, stop capture

// get the updated calibration parameters and write to device

g_Dyncal->UpdateCalibrationTables ();

Calibrating Depth/RGB with Intel Algorithm through Dynamic Calibration API

// release handles

3.4 Sample Dynamic Calibrator Application

A fully operational sample application Intel® RealSense™ Dynamic Calibrator is provided

to show case usage of the Dynamic Calibration API. Source code is part of the

installation package under the examples directory. The application supports

CalibrationToolAPI

 |-------- 2.8.0.0

 | |-------- bin

 | |--------examples

 | | |

 | | |----Common

 | | | |-------- Rs400Device.h

 | | | |-------- Rs400Device.cpp

 | | | |-------- …

 | | |

 | | |----DynamicCalibrator

 | | |-------- Main.cpp

 | | |-------- MainView.cpp

 | | |-------- …

 | | |-------- makefile (Linux)

 | | |-------- …

 | | |-------- RS400DynamicCalibrationSample.sln

(Windows)

To compile the sample app

• On Windows, open RS400DynamicCalibrationSample.sln and build the project

in VisualStudio 2015 Update 3.

• On Linux, use make.

The executables DynamicCalibrator and DynamicCalibratorCLI will be located under bin

directory after the sample successful compiled.

Depth/RGB Custom Calibration R/W

4 Depth/RGB Custom Calibration R/W

In cases where user calibrates the D400 device with their own algorithm, Custom

Calibration R/W interfaces in Dynamic Calibration API helps to write the data to the

device and read it back later. This is useful if user determines an optimized calibration

algorithm that would better fit their needs than the Intel calibration algorithm can

provide.

In custom calibration mode, the user is responsible for the calibration algorithm and

come up with the calibration parameters for the device, the library will provide

interfaces to read/write the calibration parameters to the device. The API handles all

internal data formats and device operations.

Please refer to the “Intel® RealSense™ Product Family D400 Series Custom Calibration”

white paper for more details.

4.1 Interfaces

Dynamic Calibration API provides interfaces to facilitate the depth/RGB calibration data

R/W for custom calibration.

4.1.1 Initialize

In custom mode, the Dynamic Calibration API library should be initialized with

CalibrationMode = CAL_MODE_USER_CUSTOM. For example,

Initialize(prs2dev,

DynamicCalibrationAPI::DSDynamicCalibration::CAL_MODE_USER_CUSTOM)

where prs2dev is a pointer to librealsense rs2device handle

4.1.2 WriteCustomCalibrationParameters

Write calibration parameters to device

int WriteCustomCalibrationParameters(const int resolutionLeftRight[2], const double focalLengthLeft[2],

const double principalPointLeft[2], const double distortionLeft[5], const double focalLengthRight[2], const

double principalPointRight[2], const double distortionRight[5], const double rotationRight[9], const double

translationRight[3], const bool hasRGB, const int resolutionRGB[2], const double focalLengthRGB[2], const

double principalPointRGB[2], const double distortionRGB[5], const double rotationRGB[9], const double

translationRGB[3]);

where

calibration parameters assumes that left camera is the reference camera and is located at world origin.

• resolutionLeftRight: The resolution of the left and right camera, specified as [width; height]

• focalLengthLeft: The focal length of the left camera, specified as [fx; fy] in pixels

Depth/RGB Custom Calibration R/W

• param principalPointLeft: The principal point of the left camera, specified as [px; py] in pixels

• distortionLeft: The distortion of the left camera, specified as Brown's distortion model [k1; k2; p1;

p2; k3]

• focalLengthRight: The focal length of the right camera, specified as [fx; fy] in pixels

• principalPointRight: The principal point of the right camera, specified as [px; py] in pixels

• distortionRight: The distortion of the right camera, specified as Brown's distortion model [k1; k2;

p1; p2; k3]

• rotationLeftRight: The rotation from the right camera coordinate system to the left camera

coordinate system, specified as a 3x3 row-major rotation matrix

• translationLeftRight: The translation from the right camera coordinate system to the left camera

coordinate system, specified as a 3x1 vector in millimeters

• hasRGB: Whether RGB camera calibration parameters are supplied

• resolutionRGB: The resolution of the RGB camera, specified as [width; height]

• focalLengthRGB: The focal length of the RGB camera, specified as [fx; fy] in pixels

• principalPointRGB: The principal point of the RGB camera, specified as [px; py] in pixels

• distortionRGB: The distortion of the RGB camera, specified as Brown's distortion model [k1; k2; p1;

p2; k3]

• rotationLeftRGB: The rotation from the RGB camera coordinate system to the left camera

coordinate system, specified as a 3x3 row-major rotation matrix

• translationLeftRGB: The translation from the RGB camera coordinate system to the left camera

coordinate system, specified as a 3x1 vector in millimeters

returns When DC_SUCCESS then the tables were created successfully, otherwise, returns error code

 * DC_ERROR_CUSTOM_INVALID_CAL_TABLE - one or more of the calibration tables are not valid

 * DC_ERROR_CUSTOM_INVALID_LEFTRIGHT_RESOLUTION - left and right camera resolution is not

supported

 * DC_ERROR_CUSTOM_LEFT_INTRINSICS_UNREASONABLE - left camera intrinsics unreasonable

 * DC_ERROR_CUSTOM_RIGHT_INTRINSICS_UNREASONABLE - right camera intrinsics unreasonabe

4.1.3 ReadCalibrationParameters

Read calibration parameters from device

int ReadCalibrationParameters(int resolutionLeftRight[2], double focalLengthLeft[2], double

principalPointLeft[2], double distortionLeft[5], double focalLengthRight[2], double principalPointRight[2],

double distortionRight[5], double rotationRight[9], double translationRight[3], bool& hasRGB, int

resolutionRGB[2], double focalLengthRGB[2], double principalPointRGB[2], double distortionRGB[5], double

rotationRGB[9], double translationRGB[3]);

where

• calibration parameters assumes that left camera is the reference camera and is located at world

origin.

• resolutionLeftRight: The resolution of the left and right camera, specified as [width; height]

• focalLengthLeft: The focal length of the left camera, specified as [fx; fy] in pixels

• param principalPointLeft: The principal point of the left camera, specified as [px; py] in pixels

• distortionLeft: The distortion of the left camera, specified as Brown's distortion model [k1; k2; p1;

p2; k3]

Depth/RGB Custom Calibration R/W

• focalLengthRight: The focal length of the right camera, specified as [fx; fy] in pixels

• principalPointRight: The principal point of the right camera, specified as [px; py] in pixels

• distortionRight: The distortion of the right camera, specified as Brown's distortion model [k1; k2;

p1; p2; k3]

• rotationLeftRight: The rotation from the right camera coordinate system to the left camera

coordinate system, specified as a 3x3 row-major rotation matrix

• translationLeftRight: The translation from the right camera coordinate system to the left camera

coordinate system, specified as a 3x1 vector in millimeters

• hasRGB: Whether RGB camera calibration parameters are supplied

• resolutionRGB: The resolution of the RGB camera, specified as [width; height]

• focalLengthRGB: The focal length of the RGB camera, specified as [fx; fy] in pixels

• principalPointRGB: The principal point of the RGB camera, specified as [px; py] in pixels

• distortionRGB: The distortion of the RGB camera, specified as Brown's distortion model [k1; k2; p1;

p2; k3]

• rotationLeftRGB: The rotation from the RGB camera coordinate system to the left camera

coordinate system, specified as a 3x3 row-major rotation matrix

• translationLeftRGB: The translation from the RGB camera coordinate system to the left camera

coordinate system, specified as a 3x1 vector in millimeters

returns When DC_SUCCESS then the tables were created successfully, otherwise, returns error code

• DC_ERROR_CUSTOM_INVALID_CAL_TABLE - one or more of the calibration tables are not valid

• DC_ERROR_CUSTOM_INVALID_PARAMS - one or more of the output calibration parameters are

not valid

4.1.4 ResetDeviceCalibration

Reset active calibration data on device to desired settings

int ResetDeviceCalibration(CalibrationSettings setting = CalibrationSettings::CAL_SETTINGS_GOLD);

where

setting: currently only CalibrationSettings::CAL_SETTINGS_GOLD is valid, depends on the calibrations

performed on the device, this setting came from either factory calibration or OEM calibration

return When DC_SUCCESS then calibration is reset to the desired setting

• DC_ERROR_INVALID_CAL_SETTINGS - invalid setting provided

• DC_ERROR_FAIL - failed to restore to the desired setting

4.1.5 ReadCalibrationRawData

Read calibration table raw data from device into buffer

 int ReadCalibrationRawData(uint8_t* table, CalibrationTableType tableType);

Where

Depth/RGB Custom Calibration R/W

Table is user allocated buffer in type dependent size of DC_CALIB_COEFF_TABLE_SIZE,

DC_CALIB_DEPTH_TABLE_SIZE, or DC_CALIB_RGB_TABLE_SIZE

tableType is calibration table type including CAL_TABLE_COEFF, CAL_TABLE_DEPTH, CAL_TABLE_RGB

 and return DC_SUCCESS when raw data read successfully, otherwise, in error conditions

• DC_ERROR_NOT_INITIALIZED - library not initialized

• DC_ERROR_INVALID_BUFFER - invalid buffer

• DC_ERROR_INVALID_CAL_TABLE_TYPE - unsupported table type

• DC_ERROR_FAIL - failed to read the raw data from the device

4.1.6 WriteCalibrationRawData

Write calibration table raw data to device

 int WriteCalibrationRawData(uint8_t* table, CalibrationTableType tableType);

Where

table: user allocated buffer in type dependent size of DC_CALIB_COEFF_TABLE_SIZE,

DC_CALIB_DEPTH_TABLE_SIZE, or DC_CALIB_RGB_TABLE_SIZE.. The table content usually is saved from a

device or generated from other Intel RealSense tools.

tableType: calibration table type including CAL_TABLE_COEFF, CAL_TABLE_DEPTH, CAL_TABLE_RGB

It returns DC_SUCCESS when raw data write successfully, otherwise, error conditions

• DC_ERROR_NOT_INITIALIZED - library not initialized

• DC_ERROR_INVALID_BUFFER - invalid buffer

• DC_ERROR_INVALID_CAL_TABLE_TYPE - unsupported table type

• DC_ERROR_FAIL - failed to write the raw data to the device

4.2 Read/Write through Custom Calibration R/W Interfaces
// Get libRealSense device handle for the D400 device

Rs400Device *g_rsDevice = new Rs400Device();

void *g_pDevice = g_rsDevice->GetDeviceHandle();

// Initialize the camera device

g_rsDevice->InitializeCamera();

// The expected calibration parameters for D400 series devices are defined as

following:

// resolutionLeftRight: The resolution of the left and right camera, specified as[width;

height]

// focalLengthLeft : The focal length of the left camera, specified as[fx; fy] in pixels

// principalPointLeft : The principal point of the left camera, specified as[px; py] in

pixels

Depth/RGB Custom Calibration R/W

// distortionLeft : The distortion of the left camera, specified as Brown's distortion

model [k1; k2; p1; p2; k3]

//

// focalLengthRight : The focal length of the right camera, specified as[fx; fy] in pixels

// principalPointRight : The principal point of the right camera, specified as[px; py] in

pixels

// distortionRight : The distortion of the right camera, specified as Brown's distortion

model [k1; k2; p1; p2; k3]

// rotationLeftRight : The rotation from the right camera coordinate system to the left

camera coordinate system, specified as a 3x3 rotation matrix

 // translationLeftRight : The translation from the right camera coordinate system to

the left camera coordinate system, specified as a 3x1 vector in milimeters

 //

 // hasRGB : Whether RGB camera calibration parameters are supplied

 // resolutionRGB : The resolution of the RGB camera, specified as[width; height]

 // focalLengthRGB : The focal length of the RGB camera, specified as[fx; fy] in pixels

 // principalPointRGB : The principal point of the RGB camera, specified as[px; py] in

pixels

 // distortionRGB : The distortion of the RGB camera, specified as Brown's distortion

model [k1; k2; p1; p2; k3]

// rotationLeftRGB : The rotation from the RGB camera coordinate system to the left

camera coordinate system, specified as a 3x3 rotation matrix

// translationLeftRGB : The translation from the RGB camera coordinate system to the

left camera coordinate system, specified as a 3x1 vector in milimeters

//

 bool hasRGB;

 int resolutionLeftRight[2], resolutionRGB[2];

 double focalLengthLeft[2], focalLengthRight[2], focalLengthRGB[2];

 double principalPointLeft[2], principalPointRight[2], principalPointRGB[2];

 double distortionLeft[5], distortionRight[5], distortionRGB[5];

 double rotationLeftRight[9], rotationLeftRGB[9];

 double translationLeftRight[3], translationLeftRGB[3];

// Perform calibration with user custom algo here including

// calibration stream setup and frame capture

// calibration computation with custom algo

// obtain optimized calibration parameters

//

// ***** A LOT OF YOUR CODE HERE for custom calibration *****

//

// An example of the parameter from a D400 device

// resolutionLeftRight: 1920 1080

//

// FocalLengthLeft : 1365.328979 1372.806641

// PrincipalPointLeft : 959.393311 536.781494

Depth/RGB Custom Calibration R/W

// DistortionLeft : 0.130178 - 0.393367 - 0.000580 0.001172 0.326398

//

// FocalLengthRight : 1371.838989 1379.178101

// PrincipalPointRight: 961.465759 540.101624

// DistortionRight : 0.121403 - 0.385616 - 0.001131 - 0.000172 0.325395

//

// RotationLeftRight : 0.999980 0.000408 - 0.006359

// - 0.000443 0.999985 - 0.005404

// 0.006357 0.005407 0.999965

// TranslationLeftRight : -55.109779 - 0.111518 - 0.114459

// HasRGB : 0

//

// Another example of the parameters from a D435 device

//

// resolutionLeftRight : 1280 800

//

// FocalLengthLeft : 639.322205 637.623474

// PrincipalPointLeft : 645.968262 399.232727

// DistortionLeft : -0.057135 0.067378 0.000959 - 0.000607 - 0.021941

//

// FocalLengthRight : 640.831848 639.201416

// PrincipalPointRight : 641.968384 405.641235

// DistortionRight : -0.056585 0.065952 0.000865 - 0.000556 - 0.021422

//

// RotationLeftRight : 0.999997 - 0.001835 - 0.001385

// 0.001835 0.999998 - 0.000234

// 0.001385 0.000232 0.999999

// TranslationLeftRight : -50.030815 - 0.005517 0.060515

//

// HasRGB : 1

// resolutionRGB : 1920 1080

// FocalLengthColor : 1376.079590 1375.954102

// PrincipalPointColor : 947.814758 543.885315

// DistortionColor : 0.000000 0.000000 0.000000 0.000000 0.000000

// RotationLeftColor : 0.999981 - 0.003833 0.004792

// 0.003843 0.999990 - 0.002125

// - 0.004784 0.002143 0.999986

// TranslationLeftColor : 14.624806 0.352931 0.213506

//

// Initialize Calibration Tool API to custom calibration mode

Depth/RGB Custom Calibration R/W

DynamicCalibrationAPI::DSDynamicCalibration *m_dcApi = new

DSDynamicCalibration();

int ret = m_dcApi->Initialize(g_pDevice,

DynamicCalibrationAPI::DSDynamicCalibration::CAL_MODE_USER_CUSTOM);

int status = DC_SUCCESS;

//

// Write the optimized calibration parameters to device. This will alter the calibration on

your device, please uncomment the following code only when necessary./

status = m_dcApi->WriteCustomCalibrationParameters(resolutionLeftRight,

focalLengthLeft, principalPointLeft, distortionLeft, focalLengthRight,

principalPointRight, distortionRight, rotationLeftRight, translationLeftRight, hasRGB,

resolutionRGB, focalLengthRGB, principalPointRGB, distortionRGB, rotationLeftRGB,

translationLeftRGB);

// Read back from device to confirm

status = m_dcApi->ReadCalibrationParameters(resolutionLeftRight, focalLengthLeft,

principalPointLeft, distortionLeft, focalLengthRight, principalPointRight, distortionRight,

rotationLeftRight, translationLeftRight, hasRGB, resolutionRGB, focalLengthRGB,

principalPointRGB, distortionRGB, rotationLeftRGB, translationLeftRGB);

// verify parameters

…

// Release device handle

delete g_rsDevice;

return EXIT_SUCCESS;

4.3 CustomRW for Custom Calibration Parameters Read/Write

A simple example CustomRW is provided to show case support calibration with

user custom algo and usage of the calibration parameters read/write interfaces.

Source code is part of the installation package under the examples directory.

CalibrationToolAPI

 |-------- 2.6.8.0

 | |-------- bin

 | |--------examples

 | | |

 | | |----Common

 | | | |-------- Rs400Device.h

 | | | |-------- Rs400Device.cpp

Depth/RGB Custom Calibration R/W

 | | | |-------- …

 | | |

 | | |----CustomRW

 | | |-------- Main.cpp

 | | |-------- …

 | | |-------- makefile (Linux)

 | | |-------- …

 | | |-------- CustomRW.sln (Windows)

 | | |-------- CalibrationParameters.xml

To compile the example app

• On Windows, open CustomRW.sln and build the project in VisualStudio

2015 Update 3.

• On Linux, use make.

The executables CustomRW will be located under bin directory after the

example successful compiled. CustomRW supports two command line options:

-r and –w.

The –r option is used to read the calibration parameters from the device and

dump to the screen console. –w is used to write the user calibration parameters

from a XML file to the device.

For example,

C:\CalibrationToolAPI\2.6.8.0\bin>Intel.Realsense.CustomRW.exe

CustomRW for Intel RealSense D400, Version: 2.6.8.0

-help

-?

 display list of command line options

-list

 display list of connected cameras

-version

-v

 show dynamic calibration version info

-sn <device serial number>

-sn <device serial number>

Depth/RGB Custom Calibration R/W

 if multiple cameras connected to the current system, choose one of the

cameras to modify by specifying its serial number

-g

 Reset calibration on device to default gold factory settings

-r

 Read calibration data

-w

 Write calibration data

-raw <19, 1f, or 20>

-raw <19, 1f, or 20>

 dump calibration table raw binary content

-file <file name>

-f <file name>

 dump calibration data to the specified file

-fe

 fisheye custom data (limited, available ONLY on selected device SKU)

Usages:

Example #1: reset device calibration to gold settings

 Intel.Realsense.CustomRW.exe -g

Example #2: read device calibration and display to terminal in xml format

 Intel.Realsense.CustomRW.exe -r

Example #3: read device calibration into a text file in xml format

 Intel.Realsense.CustomRW.exe -r -f mydevice.xml

Example #4: write custom calibration from a text file in xml format into the

device

 Intel.Realsense.CustomRW.exe -w -f mycustomdata.xml

Example #5: read raw calibration table from device and display to the terminal,

supported table id 19, 1F, and 20, for example,

 Intel.Realsense.CustomRW.exe -r -raw 19

Depth/RGB Custom Calibration R/W

Example #6: read raw calibration table from device and save into a binary file,

supported table id 19, 1F, and 20, for example,

 Intel.Realsense.CustomRW.exe -r -raw 19 -f mytable-19.bin

Example #7: write raw calibration table from binary file into the device,

supported table id 19, 1F, and 20, for example,

 Intel.Realsense.CustomRW.exe -w -raw 19 -f mytable-19.bin

Example #8: read custom fisheye data from device and display to the terminal

 Intel.Realsense.CustomRW.exe -r -fe

Example #9: read custom fisheye data from device and save into a binary file

 Intel.Realsense.CustomRW.exe -r -fe -f myfe.bin

Example #10: write custom fisheye data from binary file into the device

 Intel.Realsense.CustomRW.exe -w -fe -f myfe.bin

Example #11: read custom motion module data from device and save into a

binary file

 bin\CustomRW.exe -r -mm -f myimu.bin

Example #12: write custom motion module data from binary file into the device

 bin\CustomRW.exe -w -mm -f myimu.bin

C:\CalibrationToolAPI\2.6.7.0\bin>

The -w option will alter calibration data on your device. If incorrect parameters

are written, your device accuracy may be reduced or even malfunction. So

please do so only when you really need to change calibration on your device.

An example of the calibration parameter XML file CalibrationParameters.xml is

supplied in the CustomRW folder. This file is created for a D415 device. The

parameters are described in section 2.1 Dynamic Calibration Parameters and

also in documentation of the WriteCustomCalibrationParameters and

ReadCalibrationParameters APIs in section 9.22 and 9.23. User will need to

create the calibration parameter XML file with custom data for their device.

Depth/RGB Custom Calibration R/W

<?xml version="1.0"?>

<Config>

 <param name = "ResolutionLeftRight">

 <value>1920</value>

 <value>1080</value>

 </param>

 <param name = "FocalLengthLeft">

 <value>1378.69</value>

 <value>1379.13</value>

 </param>

 <param name = "PrincipalPointLeft">

 <value>965.562</value>

 <value>542.603</value>

 </param>

 <param name = "DistortionLeft">

 <value>0.09689</value>

 <value>-0.0235634</value>

 <value>-5.05513e-05</value>

 <value>0.000105855</value>

 <value>-0.640377</value>

 </param>

 <param name = "FocalLengthRight">

 <value>1389.55</value>

 <value>1390.1</value>

 </param>

 <param name = "PrincipalPointRight">

 <value>957.402</value>

 <value>553.108</value>

 </param>

 <param name = "DistortionRight">

 <value>0.123289</value>

 <value>-0.290911</value>

 <value>0.000149083</value>

 <value>0.000723527</value>

 <value>0.0992178</value>

 </param>

 <param name = "RotationLeftRight">

 <value>0.999983</value>

 <value>0.00150008</value>

 <value>-0.00558928</value>

 <value>-0.00150249</value>

Depth/RGB Custom Calibration R/W

 <value>0.999999</value>

 <value>-0.000428313</value>

 <value>0.00558863</value>

 <value>0.000436704</value>

 <value>0.999984</value>

 </param>

 <param name = "TranslationLeftRight">

 <value>-55.3888</value>

 <value>0.0448052</value>

 <value>1.52189</value>

 </param>

 <param name = "HasRGB">

 <value>1</value>

 </param>

 <param name = "ResolutionRGB">

 <value>1920</value>

 <value>1080</value>

 </param>

 <param name = "FocalLengthRGB">

 <value>1376.09</value>

 <value>1376.4</value>

 </param>

 <param name = "PrincipalPointRGB">

 <value>947.958</value>

 <value>531.068</value>

 </param>

 <param name = "DistortionRGB">

 <value>0.109862</value>

 <value>-0.122685</value>

 <value>-0.000453445</value>

 <value>-8.61456e-05</value>

 <value>-0.396171</value>

 </param>

 <param name = "RotationLeftRGB">

 <value>0.999994</value>

 <value>0.00346622</value>

 <value>0.000876088</value>

 <value>-0.00346642</value>

 <value>0.999994</value>

 <value>0.000222113</value>

 <value>-0.000875313</value>

Depth/RGB Custom Calibration R/W

 <value>-0.000225148</value>

 <value>1</value>

 </param>

 <param name = "TranslationLeftRGB">

 <value>14.6987</value>

 <value>-0.0644999</value>

 <value>0.448085</value>

 </param>

</Config>

4.3.1 CustomCalibration Example for Depth/RGB Custom Calibration

A comprehensive example CustomCalibration is provided to show case support

calibration with user custom algo and device setup for calibration. Source code

is part of the installation package under the examples directory.

CalibrationToolAPI

 |-------- 2.6.8.0

 | |-------- bin

 | |--------examples

 | | |

 | | |----Common

 | | | |-------- …

 | | |

 | | |----CustomCalibration

 | | |-------- …

 | | |-------- CustomCalibrationTest.sln (Windows)

This example requires installation of OpenCV 3.3.1. It takes some setup to

compile the example app.

Please refer to the white paper “Intel® RealSense™ Product Family D400 Series

Custom Calibration” for details.

Fisheye Custom Calibration R/W

5 Fisheye Custom Calibration R/W

Important Notes:

Fisheye custom Calibration R/W is only supported on limited devices with a

fisheye, i.e., Intel RealSense D430 with Tracking Module

On devices with Fisheye, the Fisheye itself is not initially calibrated, user will

need to calibrate it with their own methods and then write the calibration data

to the device and read it back for use later.

There are two ways to read/write into this fisheye custom calibration data

storage on the device:

1) Read/write through the Intel.Realsense.CustomRW Tool

2) User develop their own tool through the Fisheye Custom Calibration

R/W interfaces in the Dynamic Calibration API

5.1 Handling Fisheye Calibration Data with CustomRW Tool

The Intel.Realsense.CustomRW Tool provides users the ability to read/write

custom data to the device. For fisheye data, it takes a binary input file and write

it to the device. It also can read it back and display on console or save into a

binary file. The file size should be 136 bytes in exact, same as the fisheye

custom data storage on the device.

5.1.1 Dependency

The Intel.Realsense.CustomRW Tool is statically linked. No dependency other

than the C++ runtime.

5.1.2 Read and Write Custom Fisheye Data

The -fe option supports read/write the custom Fisheye data on devices of

limited SKU. This option should only be used on those devices.

Example: read custom Fisheye data from device and display to the terminal

Intel.Realsense.CustomRW.exe -r -fe

Fisheye Custom Calibration R/W

Figure 5-1 Read Fisheye Custom Data on Selected Device and Display on
Screen

Example: read custom Fisheye data from device and save into a binary file

 Intel.Realsense.CustomRW.exe -r -fe -f myfe.bin

Figure 5-2 Read Fisheye Custom Data into a Binary File

Fisheye Custom Calibration R/W

Example: write a Fisheye custom calibration binary data file into the device

When user calibrate the device, the results should be saved in a binary file of

136 bytes in size, then use the tool to write it into the device, or if user saved a

backup from the device earlier, the same write option can restore the backup to

the device.

Intel.Realsense.CustomRW.exe -w -fe -f myfe.bin

Figure 5-3 Write Fisheye Custom Data from a Binary File to the Device

5.2 Read and Write through API

The API read the custom data from device and pass it over to the user through

a user provided buffer. Similarly, user pass a buffer with the custom data to the

API and write it to the device. The size of the buffer should be 136 bytes.

5.2.1 Initialize

In custom mode, the Dynamic Calibration API library should be initialized with

CalibrationMode = CAL_MODE_USER_CUSTOM.

For example,

Initialize(prs2dev,

DynamicCalibrationAPI::DSDynamicCalibration::CAL_MODE_USER_CUSTOM)

Fisheye Custom Calibration R/W

where prs2dev is a pointer to librealsense rs2::device handle.

Important Notes:

Before initializing and using the API, the device which rs2::device points to

should be running in advanced mode. The example in the next section shows

the details.

5.2.2 ReadFECustomData

Read fisheye custom data from device into buffer. User is responsible for

allocating and deallocating the buffer memory.

 int ReadFECustomData(uint8_t* buffer);

where

 buffer: user allocated buffer in size of DC_MM_FE_CUSTOM_DATA_SIZE

(136 bytes)

 and returns DC_SUCCESS when data read successfully, otherwise, errors

• DC_ERROR_NOT_INITIALIZED - library not initialized

• DC_ERROR_INVALID_BUFFER - invalid buffer

• DC_ERROR_FAIL - failed to read data from the device

5.2.3 WriteFECustomData

Write FE custom data buffer to device. User is responsible for allocating and

deallocating the buffer memory.

 int WriteFECustomData(uint8_t* buffer);

where

 buffer: user allocated buffer in size of DC_MM_FE_CUSTOM_DATA_SIZE

(136 bytes) that contains custom data to be written to device

 and returns DC_SUCCESS then data written successfully, otherwise, returns

errors

Fisheye Custom Calibration R/W

• DC_ERROR_NOT_INITIALIZED - library not initialized

• DC_ERROR_INVALID_BUFFER - invalid buffer

• DC_ERROR_FAIL - failed to write data to device

5.2.4 Example

A simple example is provided as part of the API package under the

examples/simple-fe folder.

 // rs context

 rs2::context *ctx = new context();

 // query devices on host

 auto devices = ctx->query_devices();

 rs2::device mydev = devices[0];

 // to use the custom calibration read/write api, the device should be in advanced

mode

 if (mydev.is<rs400::advanced_mode>())

 {

 rs400::advanced_mode advanced = mydev.as<rs400::advanced_mode>();

 if (!advanced.is_enabled())

 {

 advanced.toggle_advanced_mode(true);

 }

 }

 // initialize custom calibration R/W API

 MMCalibrationRWAPI *m_dcApi = new MMCalibrationRWAPI();

 // mydev should be a pointer to rs2::device from librealsense

 int ret = m_dcApi->Initialize(&mydev);

 uint8_t mmCustom[DC_MM_CUSTOM_DATA_SIZE];

 // the custom data area has DC_MM_CUSTOM_DATA_SIZE (504 bytes) of storage

space. User can

 // define their data own format and write to the device and retrieve it later from

 // the device

 // on a new device, the storage is not initialzed, so should write data before perform

Fisheye Custom Calibration R/W

 // read. reading before writing any data will fail.

 // write some data as example

 memset((void*)&mmCustom, 0xFF, sizeof(mmCustom));

 mmCustom[160] = 0xB;

 mmCustom[180] = 0x8;

ret = m_dcApi->WriteMMCustomData((uint8_t*) &mmCustom);

….

 // read the custom data back from the device

 ret = m_dcApi->ReadMMCustomData(mmCustom);

 // interpret and use the calibration data in app

Phone Target App Integration

6 Phone Target App Integration

6.1 Target

Targeted calibration requires a fixed width (10 mm) bar target, either displayed

on phone through a phone app or printed on paper. The target image can be

generated through a provided algorithm in Matlab and C functions. When

displayed on phone, display configuration should be obtained and so the

algorithm can generate precise target image to fit to the phone display.

Phone Target App Integration

6.2 Target Generation Algorithm and API

A dynamic composition algorithm is provided to generate the target image at

runtime. The algorithm is in C/C++ with API for the phone app to call.

/*

 * File: createPhonePatternImageAPI.h

 *

 */

#ifndef CREATEPHONEPATTERNIMAGEAPI_H

#define CREATEPHONEPATTERNIMAGEAPI_H

/* Include Files */

#include "rt_nonfinite.h"

#include "rtwtypes.h"

#include "createPhonePatternImage_types.h"

#include "rt_nonfinite.h"

#include "createPhonePatternImage.h"

#include "createPhonePatternImage_terminate.h"

#include "createPhonePatternImage_emxAPI.h"

#include "createPhonePatternImage_initialize.h"

typedef struct _CPPI_SIZE

{

 int cx;

 int cy;

} CPPI_SIZE;

typedef struct _CPPI_SIZE_DOUBLE

{

 double cx;

 double cy;

} CPPI_SIZE_DOUBLE;

/* load and initialize CPPI (create Phone Pattern Image) */

void createPhonePatternImageInit(void);

Phone Target App Integration

/* uninitiate CPPI */

void createPhonePatternImageUnInit(void);

/**

* barWidth: bar width in mm

* phoneRes: phone resolution in pixels

* screenDPI: screen DPI

* hybrid: 1 to blend the texture backgroud

* screenROI: screen ROI in mm

* image: output image in gray-scale (8-bit)

*/

void createPhonePatternImageRun(double barWidth, CPPI_SIZE phoneRes,

 CPPI_SIZE screenDPI, int hybrid, CPPI_SIZE_DOUBLE screenROI,

unsigned char *image);

#endif

A sample code along with the API and algorithm code is provided as part of the

dynamic calibration release.

6.3 Phone App

Intel provides sample phone app on Apple App Store for iPhones and Google

Play for Android phones. Please refer to Appendix Intel® RealSense™ Dynamic

Calibration Target Setup and Intel® RealSense™ Dynamic Target Tool Phone

App Technical Specification for phone target app technical specification.

Source code for the sample phone apps are also provided for integration into

OEM apps.

6.4 Devices Validated

The sample phone app is validated on a limited number of devices, both IOS

and AOS. Please refer to appendix Validated Devices for Intel® RealSense™

Dynamic Target Tool Phone App for details.

Phone Target App Integration

Appendix

Dynamic Calibration API Definitions

7 Dynamic Calibration API Definitions

Calibration APIs provide interfaces for application to access dynamic calibrator

for real time re-calibration and also provides APIs to read/write/restore

calibration data on the device.

The API is defined in DSDynamicCalibration.h.

For Linux and Windows x64 environment, DSDynamicCalibration Class is

defined under namespace DynamicCalibrationAPI.

Calibration Tool API support three calibration modes:

• Intel Targetless Calibration

• Intel Targeted Calibration

• User Custom

Both Targetless and Targeted uses Intel algorithm that embedded in the API.

Custom mode enables advanced user who prefer to use their own calibration

algorithm and write/read the optimized calibration parameters to the device.

/** Calibration Modes */

enum CalibrationMode

{

 /** Intel target-less calibration (target-less depth rectification only)*/

 CAL_MODE_INTEL_TARGETLESS = 0,

 /** Intel targeted calibration (targeted depth rectification and targeted depth

scale)*/

 CAL_MODE_INTEL_TARGETED = 1,

 /** Intel targeted depth scale calibration only */

 CAL_MODE_INTEL_TARGETED_SCALE_ONLY = 3,

 /** Intel targeted RGB calibration */

 CAL_MODE_INTEL_RGB_CALIB = 4,

 /** User custom algorithm */

 CAL_MODE_USER_CUSTOM = 99};

/** Calibration Settings */

enum CalibrationSettings

{

Dynamic Calibration API Definitions

 /** gold settings */

 CAL_SETTINGS_GOLD = 0

};

Grid level enumeration quantifies the amount of the features in each cell of the

grid.

enum GridLevel

{

 /* Low amount of features in the cell */

 GRID_LEVEL_LOW = 0,

 /* Medium amount of features in the cell */

 GRID_LEVEL_MEDIUM = 1,

 /* High amount of features in the cell */

 GRID_LEVEL_HIGH = 2,

 /* Very High amount of features in the cell */

 GRID_LEVEL_VERY_HIGH = 3,

 /* Not tracked */

 GRID_LEVEL_NOT_TRACKED = 255

};

Grid fill enumeration quantifies how the cells are filled with features in the next frame.

enum GridFill

{

 /* Normal - features are subject to aging if they are in the buffer for too long */

 GRID_FILL_NORMAL = 0,

 /* Add only - will retain any existing features but keeps adding new features until the

buffer is full */

 GRID_FILL_ADD_ONLY = 1,

 /* Cell full - will retain any existing features and not add any new features and the

feature detection isn't run in the cell */

 GRID_FILL_CELL_FULL = 2

};

Grid features enumeration quantifies the amount of the features in the last frame.

enum GridFeatures

{

/* Level 0 - no to little amount features */

Dynamic Calibration API Definitions

GRID_FEATURES_L0 = 0,

 /* Level 1 - moderate amount of features */

 GRID_FEATURES_L1 = 1,

 /* Level 2 - good amount of features */

 GRID_FEATURES_L2 = 2

};

7.1 Attributes

 // target stripe orientation ir aligned with device baseline direction

 bool m_target_aligned;

// force targeted scale calibration and rgb calibration to capture more or less number of target

images than default

int m_numImages;

// force target-less calibration to ignore the blocks on the borders of FOV

bool m_ignore_borders;

7.2 Initialize

Initialize method initializes dynamic calibrator. It needs to be called at the very

begin of the process.

For target-less calibration, 1280x720 resolution is supported for all devices,

and additional native resolution 1280x800 is supported for modules with wide

angle lens, for example, D430 and D420 modules.

For targeted calibration, only 1280x720 resolution is supported across all

devices.

The function will throw a runtime error if the resolution is different or the

calibration parameters are not valid.

int Initialize(void *rs400Dev, CalibrationMode mode, int width, int height, bool

active = false);

where

rs400Dev: opaque device handle, currently only librealsense rs2device handle

is supported on both Windows and Linux

Dynamic Calibration API Definitions

mode: calibration mode, CAL_MODE_INTEL_TARGETLESS,

CAL_MODE_INTEL_TARGETED, CAL_MODE_INTEL_TARGETED_SCALE_ONLY,

CAL_MODE_INTEL_RGB_CALIB or CAL_MODE_USER_CUSTOM

width: The width of the images that will be used for dynamic calibration

height: The height of the images that will be used for dynamic calibration

active: true for laser projector is active, false for not active

returns error code:

• DC_SUCCESS - no issue

• DC_ERROR_INVALID_PARAMETER - invalid parameter passed in

• DC_ERROR_RESOLUTION_NOT_SUPPORTED_V2 - if 1280x800

resolution is requested for devices with old version 2 coefficient table,

this is not supported

• DC_ERROR_TABLE_NOT_SUPPORTED - calibration coefficient table on

device is not supported

• DC_ERROR_TABLE_NOT_VALID_RESOLUTION – calibration table

resolution width or height not valid

7.3 InitializeRgbCalibrator
Initialize RGB calibrator. It needs to be called after scale (targeted) calibration is completed, only

1280x720 resolution is supported across all devices. The function will throw a runtime error if

the resolution is different or the calibration parameters are not valid.

int InitializeRgbCalibrator(void *rs400Dev, int width = 1280, int height = 720)

where

rs400Dev: opaque device handle, currently only librealsense handle is supported on both

Windows and Linux

width: The width of the images that will be used for dynamic calibration

height: The height of the images that will be used for dynamic calibration

returns DC_SUCCESS if no issue, error code otherwise:

 DC_ERROR_INVALID_PARAMETER - invalid parameter passed in

 DC_ERROR_RESOLUTION_NOT_SUPPORTED_V2 - if 1280x800 resolution is requested for

devices with old version 2 coefficient table, this is not supported

 DC_ERROR_TABLE_NOT_SUPPORTED - calibration coefficient table on device is not

supported

 DC_ERROR_TABLE_NOT_VALID_RESOLUTION – calibration table resolution width or height

not valid

Dynamic Calibration API Definitions

7.4 AddImages

AddImages method adds a pair of left and right images to dynamic calibrator.

Add a pair of images to be used by dynamic calibration. The images must have

the width and height as specified during initialization and must be in 8-bit

grayscale format.

int AddImages(const uint8_t * leftImage, const uint8_t * rightImage, const

uint8_t * depthImage, const uint64_t timeStamp);

where

leftImage: Pointer to captured left image buffer in byte format.

rightImage: Pointer to captured right image buffer in byte format.

depthImage: Pointer to captured depth image buffer in byte format.

timestamp: timestamp on the image pair in milliseconds.

Returns

Target-less calibration:

• DC_SUCCESS if image added ok, otherwise returns error code.

• DC_ERROR_RECT_INVALID_IMAGES

• DC_ERROR_RECT_INVALID_GRID_FILL

• DC_ERROR_RECT_TOO_SIMILAR

• DC_ERROR_RECT_TOO_MUCH_FEATURES

• DC_ERROR_RECT_NO_FEATURES

• DC_ERROR_RECT_GRID_FULL

• DC_ERROR_UNKNOWN

Targeted Calibration:

 DC_SUCCESS

 DC_ERROR_RECT_INVALID_IMAGES

 DC_ERROR_RECT_TOO_SIMILAR

 DC_ERROR_RECT_TARGET_NOT_FOUND_LEFT

 DC_ERROR_RECT_TARGET_NOT_FOUND_RIGHT

 DC_ERROR_RECT_TARGET_NOT_FOUND_BOTH

 DC_ERROR_SCALE_DEPTH_NOT_CONSISTENT

 DC_ERROR_TARGET_UNSTABLE

 DC_ERROR_TARGET_TOO_CLOSE

Dynamic Calibration API Definitions

 DC_ERROR_TARGET_TOO_FAR

 DC_ERROR_SCALE_ALREADY_CAPTURED

 DC_ERROR_SCALE_DEPTH_TOO_SPARSE

 DC_ERROR_SCALE_DEPTH_NOT_A_PLANE

 DC_ERROR_SCALE_TARGET_TILT_ANGLE_BIG

 DC_ERROR_SCALE_FAILED_COMPUTE

 DC_ERROR_PHASE_COMPLETED

 DC_ERROR_UNKNOWN

7.5 GetLastPhoneROILeftCamera
(for targeted calibration only)

Get last position of target (printed or phone) in left image position is defined by

a quadrilateral plane boundary with four corner points

int GetLastPhoneROILeftCamera(float ptr[PHONELOC_DIM])

where

 ptr four corner points surrounding the target in the order

 top left corner x and y

 top right corner x and y

 bottom right corner x and y

 bottom left corner x and y

 return error code indicate target location status

• DC_SUCCESS

• DC_ERROR_NOT_IMPLEMENTED – if called in target-less mode

• DC_ERROR_RECT_TARGET_NOT_FOUND_LEFT

7.6 GetLastPhoneROIRightCamera
(for targeted calibration only)

Get last position of target (printed or phone) in right image position is defined

by a quadrilateral plane boundary with four corner points

int GetLastPhoneROIRightCamera(float ptr[PHONELOC_DIM])

where

 ptr four corner points surrounding the target in the order

Dynamic Calibration API Definitions

 top left corner x and y

 top right corner x and y

 bottom right corner x and y

 bottom left corner x and y

 return error code indicate target location status

• DC_SUCCESS

• DC_ERROR_NOT_IMPLEMENTED – if called in target-less mode

• DC_ERROR_RECT_TARGET_NOT_FOUND_RIGHT

7.7 GetLastTargetDistance

Get target distance - the last distance of the target/phone from camera. The

distance is returned in millimeters, but generally can be considered as

inaccurate as the updated calibration isn't ready by this time. This function

returns value only in the scale phase of the process. The distance of the phone

target in mm or -1.0 if the phone wasn't detected yet or not in scale phase of

the process.

float GetLastTargetDistance()

returns distance of the phone target in mm or -1.0 if the phone wasn't detected

yet or not in scale phase of the process.

7.8 AccessGridFill

AccessGridFill method returns an array of grid quantifies how the cells are

filled with features. This method only needs to be called once at the beginning

and the pointer to GridFill array will be used to check for continuous update.

void AccessGridFill(GridFill *& grid, int & gridWidth, int & gridHeight);

grid: Pointer to GridFill array with size of gridWith * gridHeight in row major.

grdWidth: Grid width as output.

grdHeight: Grid height as output.

Dynamic Calibration API Definitions

7.9 GetLastFrameFeaturesGrid

GetLastFrameFeaturesGrid method returns the current status of feature

detection in the grid array of the last frame. The features are updated whenever

new images are added. This method only needs to be called once at the

beginning and the pointer to GridFeatures array will be used to check for

continuous update.

void GetLastFrameFeaturesGrid(const GridFeatures *& grid, int & gridWidth, int

& gridHeight);

grid: Pointer to GridFeatures array with size of gridWith * gridHeight in row

major.

grdWidth: Grid width as output.

grdHeight: Grid height as output.

7.10 GetGridLevels

 void GetGridLevels(const GridLevel *& grid, int & gridWidth, int & gridHeight);

GetGridLevels method return the current status of feature detection in each

cell of the grid array. The features are updated whenever new images are

added. This method only needs to be called once at the beginning and the

pointer to GridLevel array will be used to check for continuous update.

grid: Pointer to GridLevel array with size of gridWith * gridHeight in row major.

grdWidth: Grid width as output.

grdHeight: Grid height as output.

7.11 GetGridLevelScore

GetGridLevelScore method evaluates the grid level and return a score how

well the grid is filled.

Dynamic Calibration API Definitions

float GetGridLevelScore();

Return: The score between 0.0f and 1.0f. 0.0f means empty grid. 1.0f means

grid level is high for every cell.

7.12 IsGridFull

IsGridFull method indicates whether the dynamic calibration is completed.

bool IsGridFull()

returns

• False: Dynamic calibrator is still working on calibration.

• True: Dynamic calibration is completed.

7.13 IsOutOfCalibration

int IsOutOfCalibration(bool & outOfCalibration);

Whether the device is out of calibration. The function will fail to evaluate when

DSDynamicCalibration::CanComputeCalibration returns false due to

insufficient data. You should only use this function when

DSDynamicCalibration::IsGridFull returns true when following the official

process.

outOfCalibration: Returns whether is out of calibration or not

returns error code of the evaluation, DC_SUCCESS if successful,

DC_ERROR_PREMATURE if called before scale calibration is completed in

targeted calibration.

Dynamic Calibration API Definitions

7.14 GetCalibrationError

(target-less calibration only)

bool GetCalibrationError(float & calibrationError);

Get the calibration error RMS (not normalized). This function is not part of the

official process and it is not guaranteed that calibration calculated when

DSDynamicCalibration::IsGridFull returns false will meet the specification.

calibrationError: Returns the calibration error

return: DC_SUCCESS if the evaluation was successful for target-less

rectification. DC_ERROR_NOT_APPLICABLE for targeted calibration.

7.15 IsRectificationPhaseComplete

(targeted calibration only)

bool IsRectificationPhaseComplete();

Check if rectification phase is completed, return true if completed otherwise

false.

7.16 IsScalePhaseComplete

(targeted calibration only)

bool IsScalePhaseComplete();

Check if scale calibration phase is completed, return true if completed

otherwise false.

7.17 NumOfImagesCollected

Get number of image pairs collected in the current calibration phase. return

number of image pairs (left/right for target-less calibration and left/right/depth

for targeted calibration

Dynamic Calibration API Definitions

int NumOfImagesCollected();

7.18 SetIntermediateRectificationCalibration

(targeted calibration only)

Apply the intermediate calibration results once the rectification phase is

completed.

int SetIntermediateRectificationCalibration();

where it returns

DC_SUCCESS on success, error code on failure.

DC_ERROR_NOT_APPLICABLE when called in target-less calibration

DC_ERROR_FAIL if there is problem and failed

7.19 GoToScalePhase

(targeted calibration only)

Switch to scale calibration phase. This has to be called after the rectification

phase is completed before starting scale calibration phase.

bool GoToScalePhase();

7.20 GetPhase

Get current calibration phase, return DC_TARGETED_RECTIFICATION_PHASE

for rectification phase, DC_TARGETED_SCALE_PHASE for scale phase.

DC_PHASE GetPhase();

7.21 GetTargetedCalibrationCorrection

(targeted calibration only)

Returns the updated calibration in rotation modification around the x/y/z axes

once the scale phase is complete, where

Dynamic Calibration API Definitions

 rx Returns rotation modification around the x-axis

 ry Returns rotation modification around the y-axis

 rz Returns rotation modification around the z-axis

 and true on success, false on failure.

bool GetTargetedCalibrationCorrection(double& rx, double& ry, double& rz);

This API requires the scale phase is completed.

7.22 GetRGBCalibrationCorrection
(RGB calibration only) Returns the updated calibration in rotation modification

around the x/y/z axes once the scale phase is complete. This API requires the

scale phase is completed.

bool GetRGBCalibrationCorrection(double& rx, double& ry, double& rz,

double& tx, double& ty, double& tz);

where

rx Returns rotation modification around the x-axis

ry Returns rotation modification around the y-axis

rz Returns rotation modification around the z-axis

tx Returns translation modification along the x-axis

ty Returns translation modification along the y-axis

tz Returns translation modification along the z-axis

return true on success, false on failure.

7.23 UpdateCalibrationTables

Get the updated calibration tables and write to device. For target-less, you

should only use this function when DSDynamicCalibration::IsGridFull returns

true. For targeted, only use this function after scale calibration is completed.

int UpdateCalibrationTables();

where

Return

• DC_SUCCESS on success

Dynamic Calibration API Definitions

• DC_ERROR_FAIL on failure

7.24 GetVersion

Get version of dynamic calibration as a string

static const char * GetVersion()

where

return: Version of Dynamic Calibration API

Intel® RealSense™ Dynamic Target Tool Phone App Technical Specification

8 Intel® RealSense™ Dynamic Target

Tool Phone App Technical

Specification

8.1 Introduction

Dynamic calibration is used to re-calibrate the Intel® RealSense™ Depth Camera.

As part of the process, the algorithm requires a mixed bar and block image as

calibration target. An efficient way to show such target is to display the target

image on an IOS or Android phone screen through a phone app.

This document provides technical specification for dynamic calibration target

phone app.

8.2 App Flow and Requirements

8.2.1 Overview

The figuration below shows the overall flow how the app will work as part of

the dynamic calibration process.

Intel® RealSense™ Dynamic Target Tool Phone App Technical Specification

Figure 8-1 dynamic calibration simplified flow

1) The app detects phone screen configurations

2) A target image with multiple vertical bars and black and white blocks is

dynamically generated on the fly at runtime (as first experiment in

prototyping the app, pre-generated images will be pre-supplied by

Intel). The image will be exact match to screen resolution and its content

rendered in such that the bar widths are exactly 10 mm (except the

most left and right bars on the edges) and the vertical distance between

the top black blocks and bottom black blocks also meet certain

requirement. An algorithm to generate the image is also supplied by

Intel for dynamic composition after the prototyping with pre-generated

images.

3) The app reads the target image.

The app display the target image on screen. The image resolution is exact

match to the screen resolution, so no scaling is required, and the image will be

displayed as is so that the physical width of each bar is equal to a pre-

designated fixed width, in this case 10 mm. Since the width of the bar is fixed,

the number of bars actually displayed is determined by the screen size.

1) The accuracy of its width is critical for the Intel dynamic calibration

algorithm to be correctly operational.

2) The user holds the phone at about 50-100 cm away in front of the Intel

Realsense Camera as straight as possible.

3) The Intel calibrator on the host acquires the phone target images and

perform dynamic calibration on the Intel Realsense Camera.

Intel® RealSense™ Dynamic Target Tool Phone App Technical Specification

8.2.2 Target Image

An example of the new target image is shown below. The actual image is device

dependent (will be dynamically generated at runtime).

Figure 8-2 target image

To prototype the phone app and experiment possible issues on the various

devices, a set of pre-generated images are supplied.

Apple

Device

Displays

Resolution

(pixel)

DPI

(PPI)

Screen

Physical

Dimension

(cm)

Devices with

this display

Intel Pre-

supplied

target

image

Number

of black

vertical

bars

Intel® RealSense™ Dynamic Target Tool Phone App Technical Specification

Width x

Height

4” 640 x

1136

326 4.99 x 8.85 Iphone 5, 5s,

5c, SE

ios-

40in.png

2

4.7” 750 x

1334

326 5.88 x

10.46

Iphone 6, 6s, 7 ios-

47in.png

2

5.5” 1080 x

1920

401 6.84 x

12.16

Iphone 6 plus,

6s plus, 7 plus

ios-

55in.png

3

8.2.3 Target Composition Algorithm API (Android Only)

On Android devices, displays with different resolutions and DPI are used by the

various OEM phone vendors. The pixel density could also be different in

horizontal and vertical directions. This makes hard to pre-generate target

image and match with device display.

A dynamic composition algorithm is better utilized in this case to generate the

target image at runtime. The algorithm is in C/C++ with API for the phone app

to call. On Android, this can be called through JNI.

/*

 * File: createPhonePatternImageAPI.h

 *

 */

#ifndef CREATEPHONEPATTERNIMAGEAPI_H

#define CREATEPHONEPATTERNIMAGEAPI_H

/* Include Files */

#include "rt_nonfinite.h"

#include "rtwtypes.h"

#include "createPhonePatternImage_types.h"

#include "rt_nonfinite.h"

#include "createPhonePatternImage.h"

#include "createPhonePatternImage_terminate.h"

#include "createPhonePatternImage_emxAPI.h"

#include "createPhonePatternImage_initialize.h"

typedef struct _CPPI_SIZE

{

Intel® RealSense™ Dynamic Target Tool Phone App Technical Specification

 int cx;

 int cy;

} CPPI_SIZE;

typedef struct _CPPI_SIZE_DOUBLE

{

 double cx;

 double cy;

} CPPI_SIZE_DOUBLE;

/* load and initialize CPPI (create Phone Pattern Image) */

void createPhonePatternImageInit(void);

/* uninitiate CPPI */

void createPhonePatternImageUnInit(void);

/**

* barWidth: bar width in mm

* phoneRes: phone resolution in pixels

* screenDPI: screen DPI

* hybrid:

* screenROI: screen ROI in mm

* image: output image in gray-scale (8-bit)

*/

void createPhonePatternImageRun(double barWidth, CPPI_SIZE phoneRes,

 CPPI_SIZE screenDPI, int hybrid, CPPI_SIZE_DOUBLE screenROI, unsigned char *image);

#endif

A sample code along with the API and algorithm code will be provided by Intel.

8.2.4 Target Image Display

The image is stored or generated at runtime on the phone device as part of the

app. The app reads the image and displays it on screen. The image has exact

same resolution as the device so no scaling is required and the width for each

of the bars in the image measures same as a pre-set fixed width. The width is

currently determined to be 10 mm. This pre-determined width might be

adjusted later after actual accuracy of the calibration process is measured and

tuned. The app needs to take this into account so that it will cause main issue

when there is a need to change it in later development process.

Intel® RealSense™ Dynamic Target Tool Phone App Technical Specification

Depends on the size of the screen, the image may display more or less number

of bars and the image is symmetric.

An example (ios-47.png) with iPhone 6 is shown below.

Figure 8-3 target displayed on iPhone 6

8.2.5 Target Image Accuracy Check

Target precision is critical to calibration accuracy. After the target image is successfully

displayed on phone screen, please verify its physical dimensions of key features with a

ruler, as shown below in the sample image.

• Target size - overall image should populate the full screen. Measure

target image width (A) and height (B) and make sure it matches with

screen specification

Intel® RealSense™ Dynamic Target Tool Phone App Technical Specification

• Bar size - the vertical bars in the middle (exclude the bars on the most left

and most right edges, for example, in the sample image below, only count

the 3 black and 2 white bars in the middle, in the order, black-white-

black-white-black) in equal spacing each 10 mm wide, total number of

bars x 10 mm (C), and the vertical bar length is in integral number of 10

mm, for example, depends on screen size, it should be either 80 mm, 90

mm, or 100 mm, etc (D)

Figure 8-4 Target Image Accuracy Check Points

10 10 10 10 10

Intel® RealSense™ Dynamic Target Tool Phone App Technical Specification

Figure 8-5 target image

To prototype the phone app and experiment possible issues on the various

devices, a set of pre-generated images are supplied.

8.2.6 Display Control

The stripped bar target on the phone needs to present in the entire period of

dynamic calibration without interruption. This means the app needs to meet a

few requirements:

1) Display on. Make sure the display is not turned off while the app is

running.

2) Display auto orientation. The target image should be displayed

consistently without interrupt by display auto orientation. This is

required on both iPhones.

3) The target images need to be undisturbed, i.e., it should not be resized

or overlay with any screen pop ups as result of touch or other activities.

8.2.7 Display Zoom on Apple IOS Devices

Some Apple IOS devices, for example, iPhone 6, 6s, 7, 6+, 6s+, and 7+ models,

support both a standard display and zoom display modes. The app needs to

operate correctly in both modes.

To change display modes, go to

Settings → Display & Brightness → Display Zoom → View → Standard or

Zoomed

Intel® RealSense™ Dynamic Target Tool Phone App Technical Specification

8.2.8 App Name

The app should show the following title in development (to differentiate the

previous app). Title may be finalized later. We need to keep both app alive in

TestFlight for now, until the new app is ready to replace.

Intel® RealSense™ Dynamic Target Tool

8.2.9 Device Information Page

The app should provide a simple mechanism to display device and computed

information for user to quickly self-check for potential errors.

The information page can be displayed with a swipe from left edge to the right.

The information should contain:

• Device number

• Device model

• Display screen information both expected and computed (with same

method used in scaling the target image):

• DPI pixels per inches

• Screen resolution in pixels

• Physical dimensions in width and height in cm, with precision to 0.01

cm. Expected values for this device model and actual values computed.

• Physical diagonal size of the screen in inches, expected for this device

model and actual computed value.

• Number of black bars expected to display (see table in Target Image

section)

• Black bar width in cm – 1 cm

• Version number at bottom, for example, version 2.2

The purpose of this information page is to ensure the user target is displayed

as expected and identify any error quickly.

Below is an example of the info page on iPhone 6:

Intel® RealSense™ Dynamic Target Tool Phone App Technical Specification

Figure 8-6 target display screen on iPhone 6

Figure 8-7 info page display screen on iPhone 6

Intel® RealSense™ Dynamic Target Tool Phone App Technical Specification

8.3 Supported Platforms

The app needs to support devices with IOS and Android operating systems

including phone and tablets.

8.3.1 Device OS

Apple IOS 10 and later

Android

Exact operating systems to be determined

8.3.2 Devices

8.3.2.1 Apple devices
Apple iPhone X

Apple iPhone 8 plus

Apple iPhone 8

Apple iPhone 7 plus

Apple iPhone 7

Apple iPhone SE

Apple iPhone 6s plus

Apple iPhone 6s

Apple iPhone 6 plus

Apple iPhone 6

Apple iPhone 5s

Apple iPhone 5

8.3.2.2 Android devices

AOS target app should work on devices with recent Android OS.

