

Revision 1.7

July 2021

2

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL

OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND

CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED

WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A

PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death.

SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD

INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS

AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY,

ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION,

WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT

OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or

characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no

responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without

notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from

published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-

800-548-4725, or go to: http://www.intel.com/design/literature.htm.

Code names featured are used internally within Intel to identify products that are in development and not yet publicly announced for release.

Customers, licensees and other third parties are not authorized by Intel to use code names in advertising, promotion or marketing of any product

or services and any such use of Intel's internal code names is at the sole risk of the user.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2021, Intel Corporation. All rights reserved.

http://www.intel.com/design/literature.htm

3

Contents

1 Introduction ... 8

1.1 Purpose and Scope of This Document .. 8
1.2 Organization .. 8

2 Overview .. 9

2.1 Calibration API and Calibration Data Read/Write/Restore 9
2.2 Calibration Parameters .. 10
2.3 Frame Formats Used in Custom Calibration .. 11
2.4 Frame Sync .. 11
2.5 Accuracy .. 11

3 Setup ... 13

3.1 Hardware ... 13
3.1.1 Device .. 14
3.1.2 Target .. 14
3.1.3 Tripod .. 15
3.1.4 USB ... 17
3.1.5 PC ... 17

3.2 Software .. 17
3.2.1 Custom Calibration Sample Application 17
3.2.2 Intel® RealSense™ Calibration Tool and API 17
3.2.3 Intel® RealSense™ SDK ... 19
3.2.4 OpenCV 3.3.1 ... 19
3.2.5 Glut Library .. 20

4 Calibrating Device with Custom Calibration Sample Application.............................. 21

4.1 Process Overview .. 21
4.2 Connect Device to Computer .. 21
4.3 Running Custom Calibration Sample Application 21

4.3.1 Starting Application ... 21
4.3.2 Capturing Images from 6 Viewpoints .. 22

4.4 Calibration Result .. 35
4.5 Updating Results to Device ... 37

4.5.1 Depth Quality Check before Updating Calibration 38
4.5.2 Writing Optimized Calibration to Device 38
4.5.3 Depth Quality Check after Updating Calibration 40

5 Developing Custom Calibration Application .. 42

5.1 Sample Application Source Code and Compile ... 42
5.2 Calibration Mode Camera Configuration ... 45

5.2.1 Emitter ... 45
5.2.2 Auto Exposure ... 45
5.2.3 Streaming Resolution and Format .. 45
5.2.4 Image Captures ... 45
5.2.5 Demosaic Left/Right Images for ASR / PSR SKUs 46

5.3 Detecting the Chessboard in an Image with OpenCV 46
5.4 Calculating Depth Camera Calibration with OpenCV 46
5.5 Calculating RGB Camera Calibration with OpenCV 47

4

5.6 Calculating RGB Camera Calibration Extrinsics with OpenCV 48
5.7 Writing Calibration Parameters ... 48

6 Appendix: Unrectified Left/Right Image Formats for Calibration 49

6.1 Unrectified Calibration Format .. 49
6.2 Y12I Format ... 50
6.3 Y16 Format .. 51

5

Tables

Table 2-1. Frame Formats Used in Custom Calibration* .. 11
Table 3-1. Intel® RealSense™ Calibration API Resources 18
Table 3-2. Intel® RealSense™ SDK Resources .. 19
Table 3-3. OpenCV 3.3.1 Resources ... 19
Table 3-4. OpenCV 3.3.1 Libraries Required for the Example 20
Table 6-1. Left/Right Unrectified Calibration Image Formats 49
Table 6-2 Y12I Format ... 50
Table 6-3 Y16 Format ... 51

6

List of Figures

Figure 2-1 Software Stack with Dynamic Calibration API and Calibration Apps 9
Figure 3-1 Hardware Setup ... 13
Figure 3-2 D415 Device .. 14
Figure 3-3 8x7 60x60 mm Checker Calibration Target .. 15
Figure 3-4 Tripod ... 16
Figure 4-1 Center Right Position .. 25
Figure 4-2 Viewpoint #1 ... 26
Figure 4-3 Center Right .. 27
Figure 4-4 Viewpoint #2 ... 28
Figure 4-5 Left .. 29
Figure 4-6 Viewpoint #3 ... 29
Figure 4-7 Right .. 30
Figure 4-8 Viewpoint #4 ... 31
Figure 4-9 Top Looking Down .. 32
Figure 4-10 Viewpoint #5 ... 33
Figure 4-11 Bottom Looking Up ... 34
Figure 4-12 Viewpoint #6 ... 34
Figure 4-13 Depth Quality before Updating Calibration ... 38
Figure 4-14 Updating Calibration Parameters to Device .. 39
Figure 4-15 Calibration Parameter Change .. 40
Figure 5-1 General Process for custom Calibration ... 42

7

Revision History

Revision
Number

Description Revision Date

1.0 Initial Release 01/2018

1.1 Update with Calibration API 2.5.2.0 release 01/2018

1.2 Update with Calibration API 2.6.4.0 release 06/2018

1.3 Update calibration frame image format details 08/2018

1.4 Updated with Calibration API 2.6.7.0 release 10/2018

1.5 Updated with Calibration API 2.6.8.0 release 12/2018

1.6 Updated with Calibration API 2.8.0.0 release 03/2019

1.7 Updated with Calibration API 2.11.1.0 release 07/2021

Introduction

8

1 Introduction

1.1 Purpose and Scope of This Document

In order to operate Intel® RealSense™ D400 device efficiently and accurately, users need

to make sure the device is well calibrated. The Intel supplied calibration tools including

Intel® RealSense™ Dynamic Calibrator and OEM Calibration Tool for Intel® RealSense™

Technology are designed to calibrate the devices using Intel proprietary algorithms.

Some customers or developers may choose to use their own calibration algorithms and

update the device with their custom calibration data.

This document contains technical information to assist those developing custom

calibration solutions for Intel® RealSense™ D400 series modules. The primary goal is to

guide the user how to create a calibration application, using the D400 corresponding

APIs. This includes a description how to configure the device under calibration, define

the calibration parameters, and how to read/write these parameters from/into the

device. In addition, a simple sample application based on OpenCV algorithm is

provided as an example.

It is not in the scope of this document to discuss details of calibration algorithm or

accuracy. Developing custom calibration requires knowledge in computer vision as well

as good understanding of the RealSense device operating details. It is a complex topic

and intended only for those with expert level knowledge.

1.2 Organization

This document is organized into four main parts: overview, setup, calibrating a device

with custom calibration sample app, and developing custom solution:

• Overview – brief overview of the Calibration API and parameters.

• Setup – hardware and software setup for running the Custom Calibration

Sample App to calibrate a device and developing custom calibration solutions.

• Calibrating Device with Custom Calibration Sample App – describes the

necessary hardware and software setup required running the Custom

Calibration Sample App and details steps to calibrate device.

• Developing Custom Calibration Solution – uses the sample application as an

example to describe details of steps implementing a custom calibration

solution for Intel® RealSense™ D400 series modules.

Overview

9

2 Overview

2.1 Calibration API and Calibration Data
Read/Write/Restore

Intel provides a software interface in Calibration API to enable user uploading those
calibration parameters to Intel® RealSense™ D400 devices and read the parameter
back from device:

• WriteCustomCalibrationParameters – write parameters to device

• ReadCalibrationParameters – read parameters from device

Figure 2-1 Software Stack with Dynamic Calibration API and Calibration Apps

An example tool CustomRW is also included in Calibration API to read calibration

parameters from XML file and write them to the device.

A user custom calibration app can choose one of the two approaches to update the

results to the device:

• To link to the WriteCustomCalibrationParameters and

ReadCalibrationParameters and write directly to the device through the APIs.

• To write the results into a parameter XML file and then use CustomRW to

read/write the parameters to the device.

Overview

10

In case user needs to restore the calibration data on the device,
ResetDeviceCalibration in Calibration API can be called to programmatically restore
the device calibration to gold settings.

• ResetDeviceCalibration – restore device calibration to gold settings

The CustomRW example tool also supports restore through command line option.

2.2 Calibration Parameters
Calibration parameters includes INTRINSICS and EXTRINSICS. Assume left camera is

the reference camera and is located at world origin. RGB parameters only apply to

modules with RGB, e.g., D415 and D435.

Intrinsic includes

• Focal length - specified as [fx; fy] in pixels for left, right, and RGB cameras

• Principal point - specified as [px; py] in pixels for left, right, and RGB cameras

• Distortion - specified as Brown's distortion model [k1; k2; p1; p2; k3] for left,

right, and RGB cameras

Extrinsic includes

• RotationLeftRight - rotation from right camera coordinate system to left camera

coordinate system, specified as a 3x3 rotation matrix

• TranslationLeftRight - translation from right camera coordinate system to left

camera coordinate system, specified as a 3x1 vector in millimeters

• RotationLeftRGB - rotation from RGB camera coordinate system to left camera

coordinate system, specified as a 3x3 rotation matrix

• TranslationLeftRGB - translation from RGB camera coordinate system to left

camera coordinate system, specified as a 3x1 vector in millimeters

The calibration data read/write API allows user to upload both INTRINSICS and

EXTRINSICS. The user custom algorithm is free to optimize all these parameters. The

sample in this document optimizes both intrinsic and extrinsic parameters.

The following table shows how the various calibration tools would impact calibration

parameters for Intel® RealSense™ D400 series depth cameras.

Factory
Calibration

OEM
Calibration

User Custom
Calibration

Dynamic
Calibration

Intrinsic x x x

Extrinsic x x x x

Overview

11

2.3 Frame Formats Used in Custom Calibration

The Intel® RealSense™ D400 series modules supply unrectified calibration frame

formats for use in custom calibration. The device hardware provides unrectified
left/right images in Y12I format and RGB sensor images in YUY2 format (on modules
with RGB sensor). If user application streams through LibRealSense, the left/right
images are transformed into Y16 format.

The Custom Calibration Sample App example uses LibRealSense for streaming from

the device and the following image formats for calibration.

Table 2-1. Frame Formats Used in Custom Calibration*

Format SKU Used Comment

Y16

(16-bit)

D400 Left and Right Sensors:

1920x1080 @ 15 FPS
Intel® RealSense™ Camera D400, D410, D415

D410

D420
Left and Right Sensors:

1280x800 @ 15 FPS

Intel® RealSense™ Camera D430 D420, D435,

D435i, D455
D430

D455

YUY2

D415 RGB Sensor:

1920x1080 @ 15 FPS
Intel® RealSense™ Camera D415, D435, D435i

D435

D455
RGB Sensor:

1280x800 @ 15 FPS

Intel® RealSense™ Camera D455

*Frame stream formats supported by librealsense

For details on Y12I and Y16 formats, please refer to Appendix: Unrectified Left/Right

Image Formats for Calibration.

2.4 Frame Sync

The calibration frames are not synced. To avoid possible motion blur, calibrate the

device with images captured at static positions. In this sample, a tripod is used to keep

the camera device at fixed positions while capturing the images for calibration. This is

same if you want to develop your own custom calibration app.

2.5 Accuracy

The calibration will not be accurate if the checkerboard doesn’t sufficiently cover the

field of view or the poses are not diverse enough between captures. The calibration will

Overview

12

also not be accurate if the camera or board is handheld (or not completely still) as there

is no frame sync in calibration mode.

Setup

13

3 Setup

This section describes the required hardware and software setup for running the
Custom Calibration Sample Application to calibrate a device and developing a Custom
Calibration Application.

3.1 Hardware

The hardware required including a calibration target, D400 series device to be
calibrated, USB cable, and a Windows 10 computer. To ensure the images are synced,

pictures are captured at static device positions, a tripod is used to support the device

during calibration.

Figure 3-1 Hardware Setup

Setup

14

3.1.1 Device

Intel® RealSense™ D415 device as shown below is used to show case the custom
calibration process. All D400 series devices can use the same process.

Figure 3-2 D415 Device

3.1.2 Target

The target used in this custom calibration example is an 8x7 checkerboard with a

60x60mm checker size. The target image pdf 540x480_60mm.pdf is included in the
software package described in 3.2.1 Custom Calibration Sample Application. The
target pdf is located under the target directory. Users must ensure that when printing
the target, the target is not scaled.

The specific target used in this application is for demonstration
purpose only. A developer may choose to use a different target

for their own calibration algorithm, but will need to modify the
sample application accordingly and recompile.

Setup

15

Figure 3-3 8x7 60x60 mm Checker Calibration Target

3.1.3 Tripod

Any medium sized tripod should be sufficient. In this example setup, we used a

Manfrotto Compact Light Aluminum Tripod with ball head. The ball head makes
adjustment to device orientation easier.

Setup

16

Figure 3-4 Tripod

Setup

17

3.1.4 USB

A long USB type C cable to connect the device to the host computer where the custom
calibration sample application will run.

3.1.5 PC

A Windows 10 computer.

3.2 Software

Install the following to the windows computer.

3.2.1 Custom Calibration Sample Application

A CustomCalibration sample is provided and its source code is included in Intel®
RealSense™ Calibration API package which is available for download at the Intel®
RealSense™ download center (the download link is shown in Table 3-1).

3.2.2 Intel® RealSense™ Calibration Tool and API

The calibration example uses support functions provided by the Intel® RealSense™

Calibration API to store updated calibration parameters into the non-volatile storage
on the Intel® RealSense™ D400 series modules. Required functions were first
introduced in version 2.6.5.0 of the Dynamic Calibration API, so install the latest
version and ensure that it is version 2.6.5.0 or later.

Table 3-1 lists where to download the Intel® RealSense™ Calibration API software
and associated documentation.

Setup

18

Table 3-1. Intel® RealSense™ Calibration API Resources

Resource URL

Intel®
RealSense™
Depth Module
D400 Series
Dynamic
Calibration
Software
Download

https://downloadcenter.intel.com/download/27415/?v=t

Intel®
RealSense™
Depth Module
D400 Series
Dynamic
Calibration User
Guide

https://cdrd.intel.com/v1/dl/getContent/574999.htm

Intel®
RealSense™
Depth Module
D400 Series
Dynamic
Calibration
Programmer
Guide

https://www.intel.com/content/www/us/en/support/articles/000026724.html

Find Calibration Tool and Calibration API installers and follow instruction to install.

The latest version 2.8.0.0. After installation, the directory structure should look like
below:

CalibrationToolAPI

 |

 |-------- 2.8.0.0

 | |-------- bin

 | | |-------- Intel.Realsense.CustomRW.exe

 |

 | |-------- Include

 | |-------- attributions.txt

 | |-------- release_notes.txt

 | |-------- license.txt

 | |-------- gimbal

 | |-------- target

 | |-------- examples

 | | |-------- CustomCalibration

https://downloadcenter.intel.com/download/27415/?v=t
https://cdrd.intel.com/v1/dl/getContent/574999.htm
https://www.intel.com/content/www/us/en/support/articles/000026724.html

Setup

19

Intel.Realsense.CustomRW.exe under bin directory is the calibration data read/write

tool. We will be using it to update the calibration parameters to the device after
running the Custom Calibration Sample App and obtained optimized parameters for
the device.

CustomCalibration under examples directory is the Custom Calibration Sample App

source code and project solution files to compile it. We will go over it later in this
document.

3.2.3 Intel® RealSense™ SDK

Install the latest release of the Intel® RealSense™ SDK so your custom calibration
application can use LibRealSense to conveniently open and access Intel® RealSense™
D400 series modules. Table 3-2 contains pointers to the SDK homepage, GitHub*
repository where you can download the latest release, and the SDK documentation.

Table 3-2. Intel® RealSense™ SDK Resources

Resource URL

Intel® RealSense™
SDK
Home Page

https://software.intel.com/en-us/realsense/sdk

LibRealSense GitHub* https://github.com/IntelRealSense/librealsense

SDK Documentation https://github.com/IntelRealSense/librealsense/tree/master/doc

3.2.4 OpenCV 3.3.1

The calibration example presented in this document uses several OpenCV 3.3.1

libraries for computations, so OpenCV 3.3.1 must be installed. Table 3-3 lists URLs
for downloading OpenCV 3.3.1, and Table 3-4 lists the specific OpenCV libraries that
are required by the example code.

Table 3-3. OpenCV 3.3.1 Resources

Resource URL

OpenCV GitHub* Repository https://github.com/opencv/opencv

OpenCV 3.3.1 Download https://github.com/opencv/opencv/releases/tag/3.3.1

https://software.intel.com/en-us/realsense/sdk
https://github.com/IntelRealSense/librealsense
https://github.com/IntelRealSense/librealsense/tree/master/doc
https://github.com/opencv/opencv

Setup

20

Table 3-4. OpenCV 3.3.1 Libraries Required for the Example

OpenCV 3.3.1 Library

ittnotify.lib

opencv_calib3d331.lib

opencv_core331.lib

opencv_features2d331.lib

opencv_flann331.lib

opencv_imgproc331.lib

zlib.lib

3.2.5 Glut Library

The FreeGLUT package is a convenient open source alternative to the OpenGL Utility
Toolkit for displaying graphical output to the operator of the custom calibration
application. You can download and install the FreeGLUT package at

http://freeglut.sourceforge.net/.

http://freeglut.sourceforge.net/

Calibrating Device with Custom Calibration Sample Application

21

4 Calibrating Device with Custom

Calibration Sample Application

4.1 Process Overview

The general process to calibrate a device with the Custom Calibration Sample App

involves running the app capturing images of the target from various viewpoints, the

app optimizes the calibration parameters based on the captured images and writes the

results to a XML file. The user then run CustomRW calibration data R/W tool to read the

parameters from the XML file and write them to the device.

4.2 Connect Device to Computer

Connect the device through the USC cable to the PC where Custom Calibration Sample

App locates.

4.3 Running Custom Calibration Sample Application

4.3.1 Starting Application

Use Windows explorer to browse to CustomCalibration\bin directory and find the
CustomCalibrationTest.exe and double click it to start running.

Calibrating Device with Custom Calibration Sample Application

22

The app runs with a simple UI. The main window displays the image from RGB imager,

the lower left corner displays the left and right images. In case the device does not
have RGB, only the left and right images display on the lower left corner.

A few text messages are overlay on top of the images:

• On the top left corner, it displays the device model name, for example, Intel

RealSense 415.

• On the top right corner, it displays the FW version and serial number of the

device.

• On the bottom right corner, it displays a progress counter in the form of x/6

where x is the number of images captured and accepted out of the total 6

images required.

• In the middle of the Window is a green help message to instruct the user to

position the camera and press the enter key to capture image.

• In the top middle portion of the Window is an area where error message will

display in red when the image is not accepted or other error conditions.

4.3.2 Capturing Images from 6 Viewpoints

The calibration algorithm in the Custom Calibration Sample Application requires 6
images of the target from different viewpoints. This is the minimum number of images
for simplicity. The application UI will guide the user to go through the image capturing

process.

Calibrating Device with Custom Calibration Sample Application

23

• Viewpoints - the choice of the viewpoint is critical to the accuracy of the

calibration results. A general rule is that the target in these 6 images combined

should cover as much as possible of the entire field of view and from different

angles and distances from the target.

• Cover whole target - images from any of the viewpoints should cover the entire

target in all imagers (Left, Right and RGB).

Good example – cover the entire target in all three imagers:

Calibrating Device with Custom Calibration Sample Application

24

Bad example - cover only portion of the target in any of the three imagers:

Now, let’s capture the images.

4.3.2.1 Viewpoint #1 – Center Right

Adjust the tripod and position the device on the center right facing directly to the
target.

Calibrating Device with Custom Calibration Sample Application

25

Figure 4-1 Center Right Position

The viewpoint should looks like below with the target cover much of the right side the

FOV.

Calibrating Device with Custom Calibration Sample Application

26

Figure 4-2 Viewpoint #1

Press enter to capture the image. If successful, the frame counter on the lower right
corner will increase to 1/6 meaning 1 out of 6 images are captured. If it failed, a red
error message will appear and user is directed to retake a viewpoint.

4.3.2.2 Viewpoint #2 - Center Left

Move the device to the center left directly facing the target so the target covers much

of the left portion of the FOV.

Calibrating Device with Custom Calibration Sample Application

27

Figure 4-3 Center Right

Calibrating Device with Custom Calibration Sample Application

28

Figure 4-4 Viewpoint #2

Press enter to capture the image. If successful, the frame counter on the lower right
corner will increase to 2/6 meaning 2 out of 6 images are captured. If it failed, a red
error message will appear and user is directed to retake a viewpoint.

4.3.2.3 Viewpoint #3 - Left

Move the device to the left of the camera facing the device at an angle. Use the

viewpoint below for reference.

Calibrating Device with Custom Calibration Sample Application

29

Figure 4-5 Left

Figure 4-6 Viewpoint #3

Calibrating Device with Custom Calibration Sample Application

30

Press enter to capture the image. If successful, the frame counter on the lower right

corner will increase to 3/6 meaning 3 out of 6 images are captured. If it failed, a red
error message will appear and user is directed to retake a viewpoint.

4.3.2.4 Viewpoint #4 – Right

Move the device to the right facing the target at an angle. Use the viewpoint below for

reference.

Figure 4-7 Right

Calibrating Device with Custom Calibration Sample Application

31

Figure 4-8 Viewpoint #4

Press enter to capture the image. If successful, the frame counter on the lower right
corner will increase to 4/6 meaning 4 out of 6 images are captured. If it failed, a red
error message will appear and user is directed to retake a viewpoint.

4.3.2.5 Viewpoint #5 – Top Looking Down

Adjust the tripod so the device high enough to look down the target at an angle. Use
the viewpoint below for reference.

Calibrating Device with Custom Calibration Sample Application

32

Figure 4-9 Top Looking Down

Calibrating Device with Custom Calibration Sample Application

33

Figure 4-10 Viewpoint #5

Press enter to capture the image. If successful, the frame counter on the lower right
corner will increase to 5/6 meaning 5 out of 6 images are captured. If it failed, a red
error message will appear and user is directed to retake a viewpoint.

4.3.2.6 Viewpoint #6 – Bottom Looking Up

Folding the tripod so that the device will be in a very low position looking up to the

target. Use the viewpoint below for reference.

Calibrating Device with Custom Calibration Sample Application

34

Figure 4-11 Bottom Looking Up

Figure 4-12 Viewpoint #6

Press enter to capture the image. If successful, the frame counter on the lower right

corner will increase to 6/6 meaning 6 out of 6 images are captured. If it failed, a red
error message will appear and user is directed to retake a viewpoint.

Calibrating Device with Custom Calibration Sample Application

35

4.4 Calibration Result

Once all 6 images captured, calibration will run and should finish very quickly. The

results usually located under the CustomCalibrationSample\CustomResult folder with
device serial number as the folder name. For example, CustomCalibrationSample
\CustomResult\725112060578\DC1

6 RGB images:

colorImage001.png

colorImage002.png

colorImage003.png
colorImage004.png
colorImage005.png
colorImage006.png

6 left images:

leftImage001.png
leftImage002.png
leftImage003.png
leftImage004.png
leftImage005.png
leftImage006.png

Right RGB Images
rightImage001.png
rightImage002.png

rightImage003.png
rightImage004.png
rightImage005.png

rightImage006.png

Optimized calibration parameters in XML:

CalibrationParameters.xml

For example:

<?xml version="1.0"?>

<Config>
 <param name = "ResolutionLeftRight">
 <value>1920</value>
 <value>1080</value>
 </param>

 <param name = "FocalLengthLeft">
 <value>1378.69</value>

 <value>1379.13</value>
 </param>
 <param name = "PrincipalPointLeft">
 <value>965.562</value>
 <value>542.603</value>
 </param>

 <param name = "DistortionLeft">

Calibrating Device with Custom Calibration Sample Application

36

 <value>0.09689</value>
 <value>-0.0235634</value>
 <value>-5.05513e-05</value>
 <value>0.000105855</value>
 <value>-0.640377</value>
 </param>

 <param name = "FocalLengthRight">
 <value>1389.55</value>
 <value>1390.1</value>
 </param>
 <param name = "PrincipalPointRight">
 <value>957.402</value>
 <value>553.108</value>

 </param>

 <param name = "DistortionRight">
 <value>0.123289</value>
 <value>-0.290911</value>
 <value>0.000149083</value>
 <value>0.000723527</value>

 <value>0.0992178</value>
 </param>
 <param name = "RotationLeftRight">
 <value>0.999983</value>
 <value>0.00150008</value>
 <value>-0.00558928</value>
 <value>-0.00150249</value>

 <value>0.999999</value>
 <value>-0.000428313</value>
 <value>0.00558863</value>

 <value>0.000436704</value>
 <value>0.999984</value>
 </param>
 <param name = "TranslationLeftRight">

 <value>-55.3888</value>
 <value>0.0448052</value>
 <value>1.52189</value>
 </param>
 <param name = "HasRGB">
 <value>1</value>

 </param>
 <param name = "ResolutionRGB">
 <value>1920</value>
 <value>1080</value>
 </param>

 <param name = "FocalLengthRGB">
 <value>1376.09</value>

 <value>1376.4</value>
 </param>
 <param name = "PrincipalPointRGB">
 <value>947.958</value>
 <value>531.068</value>
 </param>
 <param name = "DistortionRGB">

 <value>0.109862</value>

Calibrating Device with Custom Calibration Sample Application

37

 <value>-0.122685</value>
 <value>-0.000453445</value>
 <value>-8.61456e-05</value>
 <value>-0.396171</value>
 </param>
 <param name = "RotationLeftRGB">

 <value>0.999994</value>
 <value>0.00346622</value>
 <value>0.000876088</value>
 <value>-0.00346642</value>
 <value>0.999994</value>
 <value>0.000222113</value>
 <value>-0.000875313</value>

 <value>-0.000225148</value>

 <value>1</value>
 </param>
 <param name = "TranslationLeftRGB">
 <value>14.6987</value>
 <value>-0.0644999</value>

 <value>0.448085</value>
 </param>
</Config>

4.5 Updating Results to Device
We will use Intel.Realsense.CustomRW to read the CalibrationParameters.xml and
write the parameters to the device. Checking the depth quality before and after
updating the calibration data on the device.

Calibrating Device with Custom Calibration Sample Application

38

4.5.1 Depth Quality Check before Updating Calibration

Figure 4-13 Depth Quality before Updating Calibration

4.5.2 Writing Optimized Calibration to Device

Change directory to Calibration Tool API bin:

Cd C:\CalibrationToolAPI\2.8.0.0\bin

Dump the current parameters on the device into before.txt:

Intel.Realsense.CustomRW.exe –r > before.txt

Writing the parameters in the XML result file into device:

Intel.Realsense.CustomRW.exe –w -f CalibrationParameters.xml

Calibrating Device with Custom Calibration Sample Application

39

Figure 4-14 Updating Calibration Parameters to Device

Dump the parameters from device into after.txt:

Intel.Realsense.CustomRW –r > after.txt

Compare the parameters changed:

Calibrating Device with Custom Calibration Sample Application

40

Figure 4-15 Calibration Parameter Change

4.5.3 Depth Quality Check after Updating Calibration

Calibrating Device with Custom Calibration Sample Application

41

Developing Custom Calibration Application

42

5 Developing Custom Calibration

Application

This section demonstrates how to develop custom calibration application through key

aspects of the sample app we used in Calibrating Device with Custom Calibration

Sample Application. The sample app uses OpenCV algorithm as example.

The general process is to configure the Intel® RealSense™ device for calibration, capture

images from the camera module, perform the desired calibration computations with

OpenCV, and to write the new calibration parameters back to the cameras using

routines from the Intel® RealSense™ calibration library.

Figure 5-1 General Process for custom Calibration

5.1 Sample Application Source Code and Compile

The source code for Custom Calibration Sample Application is included in the

Calibration API package as example. The packages are described in section 3.2.2 “Intel®

RealSense™ Calibration Tool and API”.

The following directory structure is related to the sample app:

CalibrationToolAPI
 |
 |-------- 2.8.0.0
 | |----------- bin
 | | |------- DSDynamicCalibrationAPI.dll

Developing Custom Calibration Application

43

 | | |------- freeglut.dll
 | | |------- realsense2.dll
 | |
 | |-------- Include
 | | |------- DSDynamicCalibration.h
 | | |------- DSOSUtils.h
 | | |------- DSShared.h
 | |
 | |------------- lib
 | | |------- DSDynamicCalibrationAPI.lib
 | |
 | |-------- librealsense
 | | |------- include
 | | |------- lib
 | |
 | |-------- examples
 | | |------- CustomCalibration
 | | | |-------- CalibrationManager.cpp
 | | | |-------- CalibrationManager.h
 | | | |-------- CustomCalibration.cpp
 | | | |-------- CustomCalibration.h
 | | | |-------- CustomCalibrationWrapper.cpp
 | | | |-------- CustomCalibrationWrapper.h
 | | | |-------- Rs400Dev.cpp
 | | | |-------- Rs400Dev.h
 | | | |-------- FileOp.h
 | | | |-------- Main.cpp
 | | | |-------- CustomCalibrationTest.vcxproj
 | | | |-------- CustomCalibrationTest.sln

 | |
 | | |------- Common
 | | | |-------- CalibParamXmlWrite.h
 | |
 | | |------- ThirdParty
 | | | |-------- glut

The sample app depends on a few third party libraries, including GLUT, LibRealSense, and
OpenCV 3.3.1. GLUT is included under examples\ThirdParty\glut. LibRealSense is included under
librealsense.

• bin contains the runtime libraries for Calibration API, GLUT, and LibRealSense.

• Include contains header files for Calibration API.

• lib contains Calibration API library.

• librealsense contains the header files and libraries for LibRealSense

• examples contains all Calibration API examples and related files. The

CustomCalibration sample app source is under CustomCalibration folder.

Developing Custom Calibration Application

44

OpenCV 3.3.1 is not included. To compile the CustomCalibration sample app, user will need to
download sources from https://github.com/opencv/opencv/releases/tag/3.3.1, compile, and set it up

so that the OpenCV header files and libraries is under CalibrationToolAPI\2.8.0.0 as below.

OpenCV setup is discussed in section 3.2.4 “OpenCV 3.3.1” earlier in this document.

CalibrationToolAPI
 |
 |---- 2.8.0.0
 | |------- OpenCV
 | | |------- OpenCV331
 | | | |-------- include
 | | | | |--------opencv
 | | | | | |-------- cv.h
 | | | | | |-------- cv.hpp
 | | | | | |-------- cvaux.h
 | | | | | |-------- … …
 | | | | |
 | | | | |--------opencv2
 | | | | | |-------- bioinspired
 | | | | | |-------- calib3d
 | | | | | |-------- core
 | | | | | |-------- … …
 | | | |
 | | | |-------- x64
 | | | | |------- vc14
 | | | | | |-------staticlib
 | | | | | | |-------- ittnotify.lib
 | | | | | | |-------- ittnotifyd.lib
 | | | | | | |-------- opencv_calib3d331.lib
 | | | | | | |-------- opencv_calib3d331d.lib

 | | | | | | |-------- opencv_core331.lib

 | | | | | | |-------- opencv_core331d.lib

 | | | | | | |-------- opencv_features2d331.lib
 | | | | | | |-------- opencv_features2d331d.lib

 | | | | | | |-------- opencv_flann331.lib

 | | | | | | |-------- opencv_flann331d.lib

 | | | | | | |-------- opencv_imgproc331.lib

 | | | | | | |-------- opencv_imgproc331d.lib

 | | | | | | |-------- zlib.lib

 | | | | | | |-------- zlibd.lib

To build the project, open the CustomCalibrationTest.sln under

examples\CustomCalibration with Visual Studio 2015 Update 3 and build “Release”

“x64”.

https://github.com/opencv/opencv/releases/tag/3.3.1

Developing Custom Calibration Application

45

5.2 Calibration Mode Camera Configuration

For calibration, the camera device needs to be configured to capture calibration

images for both depth and RGB camera using LibRealSense. Basic device operations
are defined in Rs400Dev.h and Rs400Dev.cpp. The Configurations for the device is
defined in CalibrationManager.h and CalibrationManager.cpp.

5.2.1 Emitter

The emitter should be turned off during calibration to avoid interference.

Sample code in Rs400Device:
 m_rsDevice->EnableEmitter(0.0f);

5.2.2 Auto Exposure

Auto exposure should be turn on and the AE setpoint be adjusted according to lighting
condition. In indoor room lighting, a setpoint value around 500 – 800 should be
sufficient. In outdoor, 1200 or higher.

 m_rsDevice->EnableAutoExposure(1.0f);
 if (m_cameraInfo.isWide)
 m_rsDevice->SetAeControl(800);
 else
 m_rsDevice->SetAeControl(500);

5.2.3 Streaming Resolution and Format

Calibration frame resolutions and formats are described in Table 2-1 Frame Formats
Used in Custom Calibration, for example, in this sample, or D415 device, the
resolution is 1920x1080 with frame rate of 15 fps. The L/R format is Y16 and the RGB
format is YUY2.

 m_rsDevice->SetMediaMode(m_width, m_height, m_fps, m_rgbWidth,
m_rgbHeight, m_cameraInfo.isRGB);

 m_rsDevice->StartCapture([&](const void *leftImage, const void *rightImage,
 const void *colorImage, const uint64_t timeStamp)

5.2.4 Image Captures

The sample app captures 6 images. More images from different positions may improve
accurate. The number of images is defined in CalibrationManager.h:

 const int NUM_SHOTS = 6;

Developing Custom Calibration Application

46

5.2.5 Demosaic Left/Right Images for ASR / PSR SKUs

For ASR/PSR SKUs, left and right images need to be demosaiced.

5.3 Detecting the Chessboard in an Image with
OpenCV

For each of the captured images, find the chessboard corners with OpenCV
findChessboardCorners.

#include <opencv2/opencv.hpp>
#include <opencv2/core/core.hpp>
#include <opencv2/calib3d.hpp>
#include <vector>

using namespace std;
using namespace cv;

bool DetectChessboard(const Mat& image, const Size& chessboardSize, vector<Point2f>&
corners)
{
 // Find chessboard corners
 if (!findChessboardCorners(image, chessboardSize, corners,
CALIB_CB_ADAPTIVE_THRESH | CALIB_CB_NORMALIZE_IMAGE | CALIB_CB_FILTER_QUADS))
 return false;

 // Refine them
 cornerSubPix(image, corners, Size(11, 11), Size(-1, -1),
TermCriteria(CV_TERMCRIT_EPS | CV_TERMCRIT_ITER, 30, 0.1));
 return true;
}

5.4 Calculating Depth Camera Calibration with
OpenCV

#include <opencv2/opencv.hpp>
#include <opencv2/core/core.hpp>
#include <opencv2/calib3d.hpp>
#include <vector>

using namespace std;
using namespace cv;

static void CreateCorners3D(const Size& chessboardSize, float checkerSize, size_t
numImages, vector<vector<Point3f> >& corners3D)
{
 corners3D.resize(numImages);
 corners3D[0].resize(chessboardSize.width * chessboardSize.height);

 for (int i = 0; i < chessboardSize.height; i++)
 for (int j = 0; j < chessboardSize.width; j++)

Developing Custom Calibration Application

47

 corners3D[0][i * chessboardSize.width + j] = Point3f(j *
checkerSize, i * checkerSize, 0.0f);

 for (size_t i = 1; i < numImages; i++)
 corners3D[i] = corners3D[0];
}

double CalibrateDepthCamera(const vector<vector<Point2f> >& cornersLeft, const
vector<vector<Point2f> >& cornersRight, const Size& chessboardSize, float checkerSize,
const Size& imageSizeLR, Mat& Kl, Mat& Dl, Mat& Kr, Mat& Dr, Mat& Rlr, Mat& Tlr)
{
 CV_Assert(cornersLeft.size() != 0 && cornersLeft.size() == cornersRight.size());
 CV_Assert(checkerSize > 0.0f);

 // Create 3D prototype of the corners
 vector<vector<Point3f> > corners3D;
 CreateCorners3D(chessboardSize, checkerSize, cornersLeft.size(), corners3D);

 // Calibrate each camera individualy
 calibrateCamera(corners3D, cornersLeft, imageSizeLR, Kl, Dl, noArray(),
noArray(), CV_CALIB_FIX_ASPECT_RATIO, TermCriteria(TermCriteria::COUNT +
TermCriteria::EPS, 60, DBL_EPSILON));
 calibrateCamera(corners3D, cornersRight, imageSizeLR, Kr, Dr, noArray(),
noArray(), CV_CALIB_FIX_ASPECT_RATIO, TermCriteria(TermCriteria::COUNT +
TermCriteria::EPS, 60, DBL_EPSILON));

 // Calibrate the extrinsics between them
 return stereoCalibrate(corners3D, cornersLeft, cornersRight, Kl, Dl, Kr, Dr,
Size(-1, -1), Rlr, Tlr, noArray(), noArray(), CV_CALIB_FIX_INTRINSIC |
CV_CALIB_USE_INTRINSIC_GUESS, TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 300,
DBL_EPSILON));
}

5.5 Calculating RGB Camera Calibration with OpenCV

Note: Assumes good depth camera calibration

double CalibrateRGBCamera(const vector<vector<Point2f> >& cornersLeft, const
vector<vector<Point2f> >& cornersRGB, const Size& chessboardSize, float checkerSize,
const Size& imageSizeRGB, const Mat& Kl, const Mat& Dl, Mat& Kc, Mat& Dc, Mat& Rlc, Mat&
Tlc)
{
 CV_Assert(cornersLeft.size() != 0 && cornersLeft.size() == cornersRGB.size());
 CV_Assert(checkerSize > 0.0f);

 // Create 3D prototype of the corners
 vector<vector<Point3f> > corners3D;
 CreateCorners3D(chessboardSize, checkerSize, cornersLeft.size(), corners3D);

 // Calibrate RGB camera
 calibrateCamera(corners3D, cornersRGB, imageSizeRGB, Kc, Dc, noArray(),
noArray(), CV_CALIB_FIX_ASPECT_RATIO, TermCriteria(TermCriteria::COUNT +
TermCriteria::EPS, 60, DBL_EPSILON));

 // Calibrate the extrinsics between them
 return stereoCalibrate(corners3D, cornersLeft, cornersRGB, Kl, Dl, Kc, Dc, Size(-
1, -1), Rlc, Tlc, noArray(), noArray(), CV_CALIB_FIX_INTRINSIC |
CV_CALIB_USE_INTRINSIC_GUESS, TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 300,
DBL_EPSILON));

Developing Custom Calibration Application

48

}

5.6 Calculating RGB Camera Calibration Extrinsics
with OpenCV

Note: Assumes good depth camera calibration and intrinsics for the RGB
camera.

The CustomCalibration.h header file in the sample code contained the following

unimplemented prototype:

double RecalibrateRGBCamera(const std::vector<std::vector<cv::Point2f> >& cornersLeft,
const std::vector<std::vector<cv::Point2f> >& cornersRGB, const cv::Size& chessboardSize,
float checkerSize, const cv::Mat& Kl, const cv::Mat& Dl, const cv::Mat& Kc, const
cv::Mat& Dc, cv::Mat& Rlc, cv::Mat& Tlc);

5.7 Writing Calibration Parameters
A user custom calibration app can choose one of the two approaches to update the

results to the device:

• To link to the WriteCustomCalibrationParameters and

ReadCalibrationParameters and write directly to the device through the APIs.

• To write the results into a parameter XML file and then use CustomRW to

read/write the parameters to the device.

Custom Calibration Sample Application write the results into a parameter XML file and

use CustomRW to update the calibration parameters to the device.

Appendix: Unrectified Left/Right Image Formats for Calibration

49

6 Appendix: Unrectified

Left/Right Image Formats for

Calibration

D400 series devices stream unrectified frames from left and right imagers in advanced
mode. These streams are usually used in calibrating the devices. Y12I is the native

format from the hardware. If users access the streams through LibRealsense, these
unrectified frames are exposed in Y16 format.

6.1 Unrectified Calibration Format

Both Y12I and Y16 are unrectified. In Y12I, the left and right frames are interleaved in

the same file in 3 bytes every two pixels format. In Y16, the left and right frames are
separated buffers and each in two bytes per pixel format.

Table 6-1. Left/Right Unrectified Calibration Image Formats

Device Sensor Unrectified

Frame
Resolution

From

Device
HW

From

LibRealsense

Note

D400/D410/D415 Bayer

pattern

1920x1080 Y12I Y16 Data is in

BG/GR
Bayer
pattern.
User will
need to
demosaic

the image

before using
in
calibration.

D420/D430/D435 Monochr

ome

1280x800 Y12I Y16 Data is

monochrom.
No need to
demosaic.

Appendix: Unrectified Left/Right Image Formats for Calibration

50

On devices with regular lens, for example, D400/D410/D415, the left and right imager
sensors are colored and data is in BG/GR bayer pattern. User will need to demosaic
the data before using them in their calibration algorithms.

On devices with wide angle lens, for example, D420/D430/D435, the left and right

imager sensors are monochrome. Demosaic is not needed.

6.2 Y12I Format

The device outputs the unrectified frames in Y12I format with left and right images
interleaved in the same frame. This mode interlaces 12 bits of data from the left
imager and 12 bits of data from the right imager as described below:

Table 6-2 Y12I Format

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

RY0 [0..7] LY0

[0..3]

RY0

[8..11]

LY0 [4..11] RY1 [0..7]

LY1

[0..3]

RY1

[0..3]

LY1 [4..11] RY2 [0..7] LY2[0..3] RY2

[8..11]

LY2 [4..11] RY3 [0..7] LY3

[0..3]

RY3

[8..11]

LY3 [4..11]

Y12I data is 12-bit per pixel.

Appendix: Unrectified Left/Right Image Formats for Calibration

51

6.3 Y16 Format

Librealsense outputs the unrectified calibration frames in Y16 format. Each pixel is

represented by 16-bits of intensity or bayer pattern data from the left or right
imagers. The data is scaled to the full 16-bit value range. The organization of the
pixels in the image buffer is from left to right and top down, i.e, the first 16 bits of the
image buffer corresponds to the first pixel of the first line of the image and the second
16 bits represent the second pixel, etc.

Table 6-3 Y16 Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Y0 [0..15] Y1 [0..15]

Y16 data is 16-bit per pixel and is scaled to the full 16-bit 0 – 65535 range.

