

`

Open-Source Ethernet Networking for
Intel® RealSense™ Depth Cameras

Authors: Sergey Dorodnicov, Anders Grunnet-Jepsen, Alexey Puzhevich, Daniel Piro

Revision 0.94

April 2020

2

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S
TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death.
SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD
INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS
AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY,
ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION,
WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL
PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of
any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for
conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with
this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725,
or go to: http://www.intel.com/design/literature.htm.

Code names featured are used internally within Intel to identify products that are in development and not yet publicly announced for release. Customers,
licensees and other third parties are not authorized by Intel to use code names in advertising, promotion or marketing of any product or services and any
such use of Intel's internal code names is at the sole risk of the user.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2020, Intel Corporation. All rights reserved.

http://www.intel.com/design/literature.htm

3

Contents
1 Introduction .. 4

1.1 About This Document ... 4
1.2 Motivation ... 5

2 Quick Start ... 6
2.1 List of Components ... 6
2.2 List of Tools ... 7
2.3 Preparing the SD-Card .. 8
2.4 Assembly Steps .. 9
2.5 First Boot ... 10
2.6 Setting Static IP ... 11
2.7 Testing the Camera ... 12

3 SDK Integration .. 13
3.1 Software Overview .. 13
3.2 Building from Source .. 13
3.3 Software Architecture ... 14
3.4 SDK Examples .. 14
3.5 Design Considerations ... 15

3.5.1 RTP/RTSP ... 15
3.5.2 USB2 vs USB3 ... 15
3.5.3 Compression ... 15

3.6 Software Limitations ... 16

4 Operating the Device .. 17
4.1 Common Tasks .. 17
4.2 Firmware and Software Update .. 17
4.3 Tuning Linux Network Stack ... 17

5 Power and Performance ... 18
5.1 Latency ... 18
5.2 Power Consumption.. 19

6 Conclusion ... 21
6.1 Summary .. 21
6.2 Further Research ... 21

7 References ... 22

Introduction

4

1 Introduction

1.1 About This Document

This document presents a step-by-step guide for how to enable Intel® RealSense™ depth
cameras to be networked over an ethernet or WiFi connection, as depicted in Figure 1. It
describes an open-source reference design that is meant to be easy to replicate with off-the-
shelf components and free software. The presented architecture is intended for rapid
prototyping and evaluation and does not currently offer the maturity and full feature set needed
to serve as a production solution. There are several excellent alternative 3rd-party products
available for those who are interested in mature industrialized Intel® RealSense™ cameras with
ethernet interfaces [1] [2]. The goal of this project is to offer an alternative solution that allows
users to network existing Intel® RealSense™ depth cameras D415, D435 and D435i (and in
future more Intel® RealSense™ cameras), with nearly seamless integration with the Intel®
RealSense™ SDK 2.0 and Intel® RealSense™ Viewer, versions 2.34 and above.

Figure 1. Components of the Intel® RealSense™ Camera over ethernet reference design

We will be covering the basic architecture, the reference design parts, and the source code, as
well as examples of how to use it. We will then discuss the expected performance, as well as
avenues for future improvements.

Introduction

5

1.2 Motivation
USB and Ethernet standards offer different advantages, as highlighted in Table 1:

 USB Ethernet

Speed 480 Mbps for USB2
5000 Mbps for USB3

100 Mbps or
1000 Mbps for GigE

Length Up to 5 meters
Shorter cable is strongly
recommended

Up to 100 meters

Power 5V
Up to 2.5W

Requires special PoE equipment
and step-down from ~50V to 5V

Sensitivity Sensitive to cable movement and
electromagnetic interference from
lightning or industrial equipment

Sufficiently robust for most
industrial applications

Table 1: Advantages and disadvantages of USB and Ethernet interfaces

While the standard high-speed USB interface of the Intel® RealSense™ cameras serves most
applications very well, many usages require an interface that allows for longer cable lengths,
remote access via network, and robustness to repeated disconnection / reconnection to different
PC clients. In particular, these requirements are prevalent in robotics and industrial
applications.

Figure 2. Industrial and Robotic Applications of Intel® RealSense™ Technology. From left to right:

HEBI Robotics[17], Kinova[14], PUDU Robotics[15], ANYmal C by Anybotics[16]

Quick Start

6

2 Quick Start

2.1 List of Components

 Component Description Link

9-inch 90-degree
Type-A to USB
Type-C Cable

Right-angle short cable is
recommended for this project to
save space when using with
provided case

example
link

Standard CAT5
Ethernet Cable

 example
link

microSD Card SD-Card is needed to operate the
Raspberry Pi. 16GB and up is
recommended

example
link

Raspberry Pi 4
Model B 4GB

We are using Raspberry Pi 4 in
this project due to its versatility
and popularity. This guide can be
applied with minor modifications
to other compute boards [3]

official
link

Intel®
RealSense™
Camera D415 /
D435 / D435i

Provided case and software were
designed to work out-of-the-box
with D415, D435 and D435i
cameras

official
link

Raspberry Pi PoE
Hat

(optional)

PoE Hat is required in order to
enable Power-over-Ethernet
capability.
Without it, the project will have
the same functionality but will
require external power source via
Raspberry Pi USB-C connector

official
link

https://www.amazon.com/Cerrxian-Plated-Right-Angle-Charge/dp/B075QZ8M2Y
https://www.amazon.com/Cerrxian-Plated-Right-Angle-Charge/dp/B075QZ8M2Y
https://www.amazon.com/Monoprice-Cat5e-Ethernet-Patch-Cable/dp/B00ACR5U3S
https://www.amazon.com/Monoprice-Cat5e-Ethernet-Patch-Cable/dp/B00ACR5U3S
https://www.amazon.com/SanDisk-Ultra-microSDXC-Memory-Adapter/dp/B073JWXGNT
https://www.amazon.com/SanDisk-Ultra-microSDXC-Memory-Adapter/dp/B073JWXGNT
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
https://store.intelrealsense.com/
https://store.intelrealsense.com/
https://www.raspberrypi.org/products/poe-hat/
https://www.raspberrypi.org/products/poe-hat/

Quick Start

7

6 x M5 5mm
Screws

Custom 3D
printed case

(optional)

We provide custom Raspberry Pi
case schematics with mounting
points for Intel® RealSense™
Camera. The case is ready for
print and can be ordered online
via one of commercial 3D-
printing services

download
link

2.2 List of Tools

Figure 4: Getting started with Networking Intel RealSense Cameras

• Windows / Linux / Mac OS Laptop or Desktop PC
• Phillips Screwdriver
• microSD Card Reader (example link)
• (optional) PoE Switch (example link)

Power-over-Ethernet is not supported by most consumer routers, so in order to utilize
PoE capability compatible network switch is required.

The size and cost of this project can be significantly reduced by using camera modules (example
link) and replacing USB connector by soldering USB wires directly to the PCB. To simplify
assembly this guide assumes off-the-shelf Intel® RealSense™ Cameras and requires no soldering
skills

http://realsense-hw-public.s3-eu-west-1.amazonaws.com/rs-tests/ethernet/case-schematics.zip
http://realsense-hw-public.s3-eu-west-1.amazonaws.com/rs-tests/ethernet/case-schematics.zip
https://www.amazon.com/Anker-Portable-Reader-RS-MMC-Micro/dp/B006T9B6R2
https://www.amazon.com/Ethernet-Unmanaged-Compliant-Shielded-TL-SF1005P/dp/B076PRM2C5
https://store.intelrealsense.com/modules-and-processors.html
https://store.intelrealsense.com/modules-and-processors.html

Quick Start

8

2.3 Preparing the SD-Card

Raspberry Pi 4 requires microSD-card with compatible software to work.
Latest official software is available at raspberrypi.org.

Intel® RealSense™ SDK can be installed using the following instructions.

As reference, a pre-built image is available (download link).

After downloading and extracting the image, use balenaEtcher to flash it to the SD-card:

Figure 5: BalenaEtcher is free and open-source software for Windows, Linux, and Mac OS

https://www.raspberrypi.org/downloads/raspbian/
https://github.com/IntelRealSense/librealsense/blob/master/doc/libuvc_installation.md
http://realsense-hw-public.s3-eu-west-1.amazonaws.com/rs-tests/ethernet/pi-small.zip
https://www.balena.io/etcher/

Quick Start

9

2.4 Assembly Steps

Figure 6. Steps for assembling an ethernet-ready Intel RealSense Camera

Quick Start

10

2.5 First Boot

For initial configuration, Raspberry Pi can be connected to a monitor, keyboard and mouse.
Alternatively, it is possible to connect the device directly to a laptop / desktop PC via Raspberry
Pi USB Type-C port [4]:

Figure 7. A PC can be directly connected to the Raspberry Pi via the USB3 type-C port

For this method to work the cable must be USB Type-A to USB Type-C.
Type-C to Type-A to Type-C will also work is some cases, but Type-C to Type-C will not work
due to Pi’s USB hardware limitation

After about 30 seconds, host computer should detect new network named “PI4 USB Device”.
It is then possible to establish remote terminal session to the device:

ssh realsense@10.55.0.1 (On Windows use Putty)

Initial password and username are realsense.

First things first:
Start by running passwd command to change the default password from realsense to a new
strong password

Raspberry Pi 4 offers number of networking solutions – first and foremost there is the gigabit
ethernet port, but there is also Wi-Fi and limited network over USB that we used for initial
configuration. In this guide we’ll be setting-up ethernet connection with a static IP address, but
it is worth noting there are other ways to utilize the project.

https://www.putty.org/

Quick Start

11

2.6 Setting Static IP

While logged-in to the Pi via secure shell, enter:
sudo nano /etc/dhcpcd.conf

After entering your password, navigate to “Example static IP configuration” section:

Figure 8. Screen showing how to set a static IP address for the Raspberry Pi

Uncomment ip_address, routers and domain_name_servers lines.
Enter new intended static IP address in ip_address line. The line must end with /24, do not
remove it. Enter the IP address of your network router under routers and
domain_name_servers.

To find out your router IP, on Linux type-in ip route | grep default in a new terminal
window. On Windows, run ipconfig and look for Default Gateway, and on a Mac – run
netstat -nr | grep default

Press Control + X, Y to save changes.
Restart the system (using sudo reboot) to apply the new configuration.

Quick Start

12

2.7 Testing the Camera

Download and run Intel® RealSense™ Viewer on the host PC (instructions for Windows,
Linux, Mac)

Click Add Source > Add Network Device. Enter camera IP address:

Figure 9. Configuring the Intel® RealSense™ Viewer to access the ethernet-enabled depth camera

Click Ok, and toggle Depth and RGB sensors on:

Figure 10. Example of streaming depth and color from an ethernet-enabled device

The device should work similar to standard Intel® RealSense™ camera, with depth, infrared
and color streams available, standard sensor controls, point-cloud and texture mapping in the
3D view. For list of software limitations refer to section 3.5.

https://github.com/IntelRealSense/librealsense/blob/master/doc/distribution_windows.md
https://github.com/IntelRealSense/librealsense/blob/master/doc/distribution_linux.md
https://github.com/IntelRealSense/librealsense/blob/master/doc/installation_osx.md

SDK Integration

13

3 SDK Integration

3.1 Software Overview

Intel® RealSense™ SDK 2.34 has introduced two new software components –

1. realsense2-net module
The module exports single function rs2_create_net_device and encapsulates all
dependencies required for working with network cameras

2. rs-server tool
This application will connect to first available Intel RealSense camera and listen for
incoming connection requests

No network code is compiled into core realsense2 module, limiting code size and security
risks for customers who don’t need this functionality

3.2 Building from Source

Intel® RealSense™ SDK 2.0 is open-source and cross-platform software. The Network module
follows the same guidelines and can be built from source as well.

In order to build realsense2-net module and the rs-server tool,
add -DBUILD_NETWORK_DEVICE=ON to the list of CMake flags when configuring the project.
When building for the Raspberry Pi
-DFORCE_RSUSB_BACKEND=ON flag is also strongly recommended.

At the moment, rs-server can be only compiled on Linux but realsense2-net works on
Windows, Linux and Mac OS. Integration with python, Android and other wrappers in
librealsense ecosystem will be provided in future releases based on feedback from the
community.

SDK Integration

14

3.3 Software Architecture

The project uses industry standard RTP protocol for video streaming.

In addition, RTSP protocol is used for camera control. Networking is handled by Live555 –
open-source cross-platform library for low-power multimedia streaming[5]. Depth compression
is done using LZ4 [6], color and infrared streams are compressed using libjpeg-turbo open-source
library [7].

Figure 11. Ethernet-enabled camera software architecture

3.4 SDK Examples

Existing SDK examples and Apps will not work with a network device out of the box since
network connection needs to be explicitly established.

That said, modifying existing code to work with a network camera is easy:

1. Add #include <librealsense2-net/rs_net.hpp> to the code
2. Inside CMakeLists.txt add realsense2-net to target_link_libraries
3. Create network device from IP and add it to a context:

rs2::net_device dev("10.0.0.99");
rs2::context ctx; dev.add_to(ctx);

4. Pass context to pipeline constructor:
rs2::pipeline pipe(ctx);

No additional code changes should be necessary. From that point the SDK should treat network
camera like any other Intel® RealSense™ camera.

SDK Integration

15

3.5 Design Considerations

This section outlines the considerations for key design decisions in this project.

3.5.1 RTP/RTSP

RTP/RTSP protocols are used for streaming and control [26].

ROS ecosystem also offers good networking capabilities and may be a better choice if the client
is also using ROS [10]. ROS is, however, less portable, requires larger download and does not
integrate easily into existing SDK applications.

Another significant alternative is GigE Vision – a well-known industry format for network
cameras [11]. RTP/RTSP was chosen because of availability of lightweight, permissively open-
sourced and portable implementation.

3.5.2 USB2 vs USB3

Different types of USB interface offer different advantages with USB3 bandwidth being
significantly higher allowing for higher resolutions, and USB2 cables being more widespread
and less sensitive to electromagnetic interference [9]

3.5.3 Compression

Depth data is compressed using LZ4 algorithm. Depth does not follow some of the assumptions
of common lossy compression algorithm and using these algorithms on depth data can have
destructive effects on 3D applications. This is why lossless algorithm was chosen [21].

Color and Infrared data are compressed using JPEG algorithm. While video compression
algorithms such as MPEG can offer better compression rates, they are sensitive to frame drops
[12]. In addition, ffmpeg is industry standard for MPEG compression, but it is not as permissively
licensed as other SDK components [13].

SDK Integration

16

3.6 Software Limitations

At the moment, the following features are not yet available for network device:

1. D400 Advanced Mode API
2. Dynamic and Self Calibration
3. Firmware Update API
4. IMU streaming support
5. Integration with SDK Wrappers
6. Post-processing

In addition, to better match ethernet bandwidth limitation rs-server is only exposing the
following camera modes:

Format Resolution Framerate Comments

Z16
(16 bits per pixel)

1280x720 6

640x480 6, 15, 30

480x270 6, 15, 30, 60

Y8
(8 bits per pixel)

1280x720 6

640x480 6, 15, 30

480x270 6, 15, 30, 60

UYVY
(16 bits per pixel)

1280x720 6

640x480 6, 15, 30

480x270 6, 15, 30, 60

YUY2
(16 bits per pixel)

1280x720 6

640x480 6, 15, 30

424x240 6, 15, 30, 60

Table 2: Table of supported camera modes

Finally, current design is not addressing camera discovery, authentication and data
encryption. For list of known issues please refer to SDK release notes [27]

Operating the Device

17

4 Operating the Device
This section assumes that the camera is configured with static IP 10.0.0.99

4.1 Common Tasks

Restart the device:
ssh realsense@10.0.0.99
sudo reboot

Restart camera service (rs-server):
ssh realsense@10.0.0.99
sudo systemctl restart rs-server.service

4.2 Firmware and Software Update

These are the steps required to update firmware of a remote camera:

1. Download latest firmware from dev.intelrealsense.com/docs/firmware-releases
2. Extract firmware image file
3. Open secure shell session to the device:

ssh realsense@10.0.0.99
4. Copy firmware binary from host to remote machine:

scp Signed_Image_UVC_5_12_3_0.bin
realsense@10.0.0.99:/home/realsense/Signed_Image_UVC_5_12_3_0.bin

5. Use rs-fw-update tool to update camera firmware:
rs-fw-update -f Signed_Image_UVC_5_11_6_250.bin

Updating server software requires building new version of the SDK from source and installing
it on the device. See compilation instructions

4.3 Tuning Linux Network Stack

Running the following commands can significantly improve network camera performance:

echo 8388608 > /proc/sys/net/core/wmem_default
echo 8388608 > /proc/sys/net/core/rmem_default

Raspberry Pi image comes pre-configured with these settings; however, we recommend also
running this on the client side as well.

mailto:realsense@10.0.0.99
mailto:realsense@10.0.0.99
https://dev.intelrealsense.com/docs/firmware-releases
https://github.com/IntelRealSense/librealsense/tree/master/tools/fw-update
https://github.com/IntelRealSense/librealsense/blob/master/doc/libuvc_installation.md

Power and Performance

18

5 Power and Performance
All measurements were captured using the following setup:

• Intel® RealSense™ Depth Camera D435
• Raspberry Pi 4 Model B 4GB running rs-server
• Intel® Core™ i7-8550U @ 1.8GHz running Ubuntu 16.04
• 3000x2000 60Hz Monitor
• Gigabit ethernet (Raspberry Pi, host PC and network switch)

5.1 Latency

Intel® RealSense SDK 2.0 includes a simple tool for estimating camera latency – rs-latency-
tool. It can be built from source using the OpenCV wrapper instructions.

rs-latency-tool is designed to estimate camera latency without special equipment. It can
offer only an upper-bound on the actual camera latency. In practice results also depend on
host performance and monitor refresh rate

Results vary from configuration to configuration, but overall show that the ethernet stack is
adding on average between 1 to 1½ frames of extra latency:

 USB Ethernet

RGB 640x480 30 FPS 112ms / 3.3 frames 160ms / 4.8 frames

RGB 1280x720 6 FPS 320ms / 1.9 frames 330ms / 2 frames

IR 640x480 30 FPS 93ms / 2.7 frames 130ms / 3.9 frames

IR 1280x720 6 FPS 166ms / 1 frame 330ms / 1.9 frames

Table 3: Table of latency measurements over Ethernet and USB

RGB sensor is rolling-shutter and by default actual FPS is controlled by auto-exposure
algorithm. To reduce these effects, measurements were taken with manual exposure of 44ms
and gain 93.

https://github.com/IntelRealSense/librealsense/tree/master/wrappers/opencv/latency-tool
https://github.com/IntelRealSense/librealsense/tree/master/wrappers/opencv/latency-tool
https://github.com/IntelRealSense/librealsense/tree/master/wrappers/opencv

Power and Performance

19

5.2 Power Consumption

The following results show data from example runs of the system at various configurations
with both Depth and RGB streams enabled. Device was restarted between runs.

• Power – power consumption in Watts
• CPU% - percent of overall system CPU utilization, over all cores, counting both

kernel and userspace load
• Temperature – temperature of the CPU in degrees Celsius
• FPS – average FPS across 5 seconds intervals
• Jitter – number of instances per second where frame did not arrive within 5ms range

of expected time

Figure 12. Low (480x270 for depth and 424x240 for RGB) resolution at 60 FPS

0

10

20

30

40

50

60

70

CPU% Temperature FPS Jitter Power(W)

Power and Performance

20

Figure 13. VGA resolution at 30 FPS

Figure 14. HD resolution at 6 FPS

0

10

20

30

40

50

60

CPU% Temperature FPS Jitter Power (W)

0

10

20

30

40

50

60

CPU% Temperature FPS Jitter Power (W)

Conclusion

21

6 Conclusion

6.1 Summary

This guide presents steps needed to assemble and operate network depth-camera based on
Intel® RealSense™ technology. We’ve reviewed design considerations, software architecture
and basic performance results.

6.2 Further Research

Streaming 3D content over ethernet is still active area of research. The following steps can
further benefit this project:

• Leveraging better compression algorithms will allow more USB3 camera modes to be
reliably supported over ethernet. Novel software and hardware 3D compression
schemes are being continuously published and call for closer evaluation [22] [23] [24].

• Designing and manufacturing IP65 enclosure with an M12 connector could greatly
improve applicability for industrial use-cases [18].

• Computational resources of the Raspberry Pi can be utilized to perform additional post-
processing tasks. Depth decimation can further reduce network bandwidth, while
spatial and temporal filtering can improve depth quality[19]. Furthermore, Intel®
OpenVINO™ toolkit can be combined with Intel® RealSense™ SDK to run AI
inference on the edge [20].

• RTP protocol allows for multi-client broadcasting. This opens new possibilities for
sharing 3D data with wider audience over the Internet, for education and research
purposes.

• Additional areas of research – pairing, camera discovery [25], authentication, data
encryption and PTP time synchronization.

References

22

7 References

1. LIPSedge™ AE400 Industrial 3D Camera
2. FRAMOS Industrial Depth Camera D435e
3. Aeon Up-Board and Power-over-Ethernet Hat
4. Pi4 USB-C Gadget by Benjamin Hardill
5. live555 Media Server
6. LZ4 - Extremely fast compression algorithm
7. libjpeg-turbo – optimized JPEG compression implementation
8. Intel® RealSense™ Depth Camera over Ethernet
9. CompTIA A+ Certification Guide – on differences between USB2 and USB3
10. ROS Intel RealSense WIKI – using multiple cameras on two machines
11. Wikipedia - GigE Vision
12. JPEG and MPEG compression
13. FFmpeg License and Legal Considerations
14. KINOVA Gen3 Robots
15. Pudu Robotics and Intel RealSense Technology
16. Anybotics ANYmal C autonomous legged robot
17. HEBI Robotics
18. Mouser Electronics - M12 versus RJ45 Ethernet connection systems
19. Depth Post-Processing for Intel® RealSense™ D400 Depth Cameras
20. Intel® Distribution of OpenVINO™ toolkit with the Intel® RealSense™ Viewer
21. Fast Lossless Depth Image Compression by Andrew D. Wilson (video)
22. Intel RealSense D400 depth stream encoding to HEVC Main10 by Bartosz Meglicki
23. Real-time decoding and AR playback of the emerging MPEG video-based point cloud

compression standard
24. Point Cloud Compression in MPEG - IEEE International Conference on Image Processing
25. PTP/IP Adapter Design and Connectivity Techniques for Legacy Imaging Appliances
26. Internet Protocols for Real-Time Multimedia Communication
27. Intel® RealSense™ SDK 2.0 Release Notes

https://www.lips-hci.com/product-page/lipsedge-ae400-industrial-3d-camera
https://www.framos.com/en/framos-depth-camera-d435e-starter-kit-22805
https://up-shop.org/up-boards/272-up-board.html
https://up-board.org/power-up-by-poe/
https://www.hardill.me.uk/wordpress/2019/11/02/pi4-usb-c-gadget/
http://www.live555.com/
https://github.com/lz4/lz4
https://libjpeg-turbo.org/
https://dev.intelrealsense.com/docs/depth-camera-over-ethernet-whitepaper
https://books.google.co.il/books?id=AJ8tCwAAQBAJ&lpg=PT384&ots=rKABG2reyg&dq=usb2%20vs%20usb3%20electromagnetic%20interference%20difference&pg=PT384#v=onepage&q=usb2%20vs%20usb3%20electromagnetic%20interference%20difference&f=false
https://github.com/IntelRealSense/realsense-ros/wiki/showcase-of-using-3-cameras-in-2-machines
https://en.wikipedia.org/wiki/GigE_Vision
https://www.encyclopedia.com/computing/news-wires-white-papers-and-books/jpeg-mpeg
http://ffmpeg.org/legal.html
https://www.kinovarobotics.com/en/products/gen3-robot
https://www.intelrealsense.com/pudu-delivery-robot/
https://www.anybotics.com/anymal-legged-robot/
https://www.hebirobotics.com/
https://www.mouser.com/pdfdocs/PhoenixContactM12_vs_RJ45_White_Paper.PDF
https://dev.intelrealsense.com/docs/depth-post-processing
https://www.intelrealsense.com/realsense-openvino/
https://dl.acm.org/doi/10.1145/3132272.3134144
https://www.youtube.com/watch?v=WYU2upBs2hA
https://github.com/bmegli/realsense-depth-to-vaapi-hevc10
https://www.ibc.org/publish/real-time-decoding-and-ar-playback-of-the-emerging-mpeg-video-based-point-cloud-compression-standard/5062.article
https://www.ibc.org/publish/real-time-decoding-and-ar-playback-of-the-emerging-mpeg-video-based-point-cloud-compression-standard/5062.article
https://2020.ieeeicip.org/program/tutorials/point-cloud-compression-in-mpeg/
https://www.researchgate.net/publication/3183187_PTPIP_Adapter_Design_and_Connectivity_Techniques_for_Legacy_Imaging_Appliances
https://www.cse.wustl.edu/%7Ejain/books/ftp/rtp.pdf
https://github.com/IntelRealSense/librealsense/wiki/Release-Notes

	1 Introduction
	1.1 About This Document
	1.2 Motivation

	2 Quick Start
	2.1 List of Components
	2.2 List of Tools
	2.3 Preparing the SD-Card
	2.4 Assembly Steps
	2.5 First Boot
	2.6 Setting Static IP
	2.7 Testing the Camera

	3 SDK Integration
	3.1 Software Overview
	3.2 Building from Source
	3.3 Software Architecture
	3.4 SDK Examples
	3.5 Design Considerations
	3.5.1 RTP/RTSP
	3.5.2 USB2 vs USB3
	3.5.3 Compression

	3.6 Software Limitations

	4 Operating the Device
	4.1 Common Tasks
	4.2 Firmware and Software Update
	4.3 Tuning Linux Network Stack

	5 Power and Performance
	5.1 Latency
	5.2 Power Consumption

	6 Conclusion
	6.1 Summary
	6.2 Further Research

	7 References

